ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion control in pressure-driven flow through bowed rectangular microchannels

97   0   0.0 ( 0 )
 نشر من قبل Daniel Harris
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In fully-developed pressure-driven flow, the spreading of a dissolved solute is enhanced in the flow direction due to transverse velocity variations in a phenomenon now commonly referred to as Taylor-Aris dispersion. It is well understood that the characteristics of the dispersion are sensitive to the channels cross-sectional geometry. Here we demonstrate a method for manipulation of dispersion in a single rectangular microchannel via controlled deformation of its upper wall. Using a rapidly prototyped multi-layer microchip, the channel wall is deformed by a controlled pressure source allowing us to characterize the dependence of the dispersion on the deflection of the channel wall and overall channel aspect ratio. For a given channel aspect ratio, an optimal deformation to minimize dispersion is found, consistent with prior numerical and theoretical predictions. Our experimental measurements are also compared directly to numerical predictions using an idealized geometry.

قيم البحث

اقرأ أيضاً

We report a novel technique to passively create strong secondary flows at moderate to high flow rates in microchannels, accurately control them and finally, due to their deterministic nature, program them into microfluidic platforms. Based on the flo w conditions and due to the presence of the pillars in the channel, the flow streamlines will lose their fore-aft symmetry. As a result of this broken symmetry the fluid is pushed away from the pillar at the center of the channel (i.e. central z-plane). As the flow needs to maintain conservation of mass, the fluid will laterally travel in the opposite direction near the top and bottom walls. Therefore, a NET secondary flow will be created in the channel cross-section which is depicted in this video. The main platform is a simple straight channel with posts (i.e. cylindrical pillars - although other pillar cross-sections should also function) placed along the channel. Channel measures were 200 mumtimes50 mum, with pillars of 100 mum in diameter. Positioning the pillars in different locations within the cross-section of the channel will result in induction of different secondary flow patterns, which can be carefully engineered. The longitudinal spacing of the pillars is another design parameter (600 mum spacing was used for this video). The device works over a wide range (moderate to high) flow rates. We used 150 muL/min in this experiment. The device has 3 inlets where a dye stream is co-flowed between two water streams. In this video, one can see the effect of the net secondary flow created by inertia in the microchannel by visualizing the cross-section of the fluorescently labeled stream. Confocal images are sequentially taken at the inlet and after 49 consecutive pillars.
69 - Zhaokuan Lu 2020
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric dry ing device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.
Long, shallow microchannels embedded in thick soft materials are widely used in microfluidic devices for lab-on-a-chip applications. However, the bulging effect caused by fluid--structure interactions between the internal viscous flow and the soft wa lls has not been completely understood. Previous models either contain a fitting parameter or are specialized to channels with plate-like walls. This work is a theoretical study of the steady-state response of a compliant microchannel with a thick wall. Using lubrication theory for low-Reynolds-number flows and the theory for linearly elastic isotropic solids, we obtain perturbative solutions for the flow and deformation. Specifically, only the channels top wall deformation is considered, and the ratio between its thickness $t$ and width $w$ is assumed to be $(t/w)^2 gg 1$. We show that the deformation at each stream-wise cross-section can be considered independently, and that the top wall can be regarded as a simply supported rectangle subject to uniform pressure at its bottom. The stress and displacement fields are found using Fourier series, based on which the channel shape and the hydrodynamic resistance are calculated, yielding a new flow rate--pressure drop relation without fitting parameters. Our results agree favorably with, and thus rationalize, previous experiments.
We derive an expression for the velocity profile of a pressure-driven yield-stress fluid flow-ing around a two-dimensional concentric annulus. This result allows the prediction of the effects of channel curvature on the pressure gradient required to initiate flow for given yield stress, and for the width of the plug region and the flux through the channel at different curvatures. We use it to validate numerical simulations of the flow from a straight channel into a curved channel which show how the fluid first yields everywhere before reaching the predicted velocity profile.
154 - Jun Li , Chunpei Cai , Zhi-Hui Li 2017
Gaseous thermal transpiration flows through a rectangular micro-channel are simulated by the direct simulation BGK (DSBGK) method. These flows are rarefied, within the slip and transitional flow regimes, which are beyond many traditional computationa l fluid dynamic simulation schemes, such as those based on the continuum flow assumption. The flows are very slow and thus many traditional particle simulation methods suffer large statistical noises. The adopted method is a combination of particle and gas kinetic methods and it can simulate micro-flows properly. The simulation results of mass flow rates have excellent agreement with experimental measurements. In another case of 2D channel, the DSBGK comparisons with the DSMC result and the solution of Shakhov equation are also in very good agreement. Another finding from this study is that numerical simulations by including two reservoirs at the channel ends lead to appreciable differences in simulation results of velocity and pressure distributions within the micro-channel. This is due to the inhaling and exhaling effects of reservoirs at the channel ends. Even though excluding those reservoirs may accelerate the simulations significantly by using a single channel in simulations, special attentions are needed because this treatment may over-simplify the problem, and some procedures and results may be questionable. One example is to determine the surface momentum accommodation coefficient by using analytical solution of the mass flow rate obtained in a single-channel problem without the confinement effect of reservoirs at the two ends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا