ﻻ يوجد ملخص باللغة العربية
Long, shallow microchannels embedded in thick soft materials are widely used in microfluidic devices for lab-on-a-chip applications. However, the bulging effect caused by fluid--structure interactions between the internal viscous flow and the soft walls has not been completely understood. Previous models either contain a fitting parameter or are specialized to channels with plate-like walls. This work is a theoretical study of the steady-state response of a compliant microchannel with a thick wall. Using lubrication theory for low-Reynolds-number flows and the theory for linearly elastic isotropic solids, we obtain perturbative solutions for the flow and deformation. Specifically, only the channels top wall deformation is considered, and the ratio between its thickness $t$ and width $w$ is assumed to be $(t/w)^2 gg 1$. We show that the deformation at each stream-wise cross-section can be considered independently, and that the top wall can be regarded as a simply supported rectangle subject to uniform pressure at its bottom. The stress and displacement fields are found using Fourier series, based on which the channel shape and the hydrodynamic resistance are calculated, yielding a new flow rate--pressure drop relation without fitting parameters. Our results agree favorably with, and thus rationalize, previous experiments.
We report a novel technique to passively create strong secondary flows at moderate to high flow rates in microchannels, accurately control them and finally, due to their deterministic nature, program them into microfluidic platforms. Based on the flo
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid
We examine experimentally the deformation of flexible, microscale helical ribbons with nanoscale thickness subject to viscous flow in a microfluidic channel. Two aspects of flexible microhelices are quantified: the overall shape of the helix and the
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric dry
We study analytically the joint dispersion of Gaussian patches of salt and colloids in linear flows, and how salt gradients accelerate or delay colloid spreading by diffusiophoretic effects. Because these flows have constant gradients in space, the p