ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study on thermal transpiration flows through a rectangular channel

155   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaseous thermal transpiration flows through a rectangular micro-channel are simulated by the direct simulation BGK (DSBGK) method. These flows are rarefied, within the slip and transitional flow regimes, which are beyond many traditional computational fluid dynamic simulation schemes, such as those based on the continuum flow assumption. The flows are very slow and thus many traditional particle simulation methods suffer large statistical noises. The adopted method is a combination of particle and gas kinetic methods and it can simulate micro-flows properly. The simulation results of mass flow rates have excellent agreement with experimental measurements. In another case of 2D channel, the DSBGK comparisons with the DSMC result and the solution of Shakhov equation are also in very good agreement. Another finding from this study is that numerical simulations by including two reservoirs at the channel ends lead to appreciable differences in simulation results of velocity and pressure distributions within the micro-channel. This is due to the inhaling and exhaling effects of reservoirs at the channel ends. Even though excluding those reservoirs may accelerate the simulations significantly by using a single channel in simulations, special attentions are needed because this treatment may over-simplify the problem, and some procedures and results may be questionable. One example is to determine the surface momentum accommodation coefficient by using analytical solution of the mass flow rate obtained in a single-channel problem without the confinement effect of reservoirs at the two ends.

قيم البحث

اقرأ أيضاً

We develop a 3D porous medium model for sap flow within a tree stem, which consists of a nonlinear parabolic partial differential equation with a suitable transpiration source term. Using an asymptotic analysis, we derive approximate series solutions for the liquid saturation and sap velocity for a general class of coefficient functions. Several important non-dimensional parameters are identified that can be used to characterize various flow regimes. We investigate the relative importance of stem aspect ratio versus anisotropy in the sapwood hydraulic conductivity, and how these two effects impact the radial and vertical components of sap velocity. The analytical results are validated by means of a second-order finite volume discretization of the governing equations, and comparisons are drawn to experimental results on Norway spruce trees.
333 - Sunghwan Jung 2021
Drop condensation and evaportation as a result of the gradient in vapor concentration are important in both engineering and natural systems. One of the interesting natural examples is transpiration on plant leaves. Most of water in the inner space of the leaves escapes through stomata, whose rate depends on the surface topography and a difference in vapor concentrations inside and just outside of the leaves. Previous research on the vapor flux on various surfaces has focused on numerically solving the vapor diffusion equation or using scaling arguments based on a simple solution with a flat surface. In this present work, we present and discuss simple analytical solutions on various 2D surface shapes (e.g., semicylinder, semi-ellipse, hair). The method of solving the diffusion equation is to use the complex potential theory, which provides analytical solutions for vapor concentration and flux. We find that a high mass flux of vapor is formed near the top of the microstructures while a low mass flux is developed near the stomata at the leaf surface. Such a low vapor flux near the stomata may affect transpiration in two ways. First, condensed droplets on the stomata will not grow due to a low mass flux of vapor, which will not inhibit the gas exchange through the stomatal opening. Second, the low mass flux from the atmosphere will facilitate the release of high concentrated vapor from the substomatal space.
This paper numerically investigates the shear flow between double concentric spherical boundaries rotating differentially, so-called spherical Couette flow, under unstable thermal stratification, focusing on the boundary of the axisymmetric/non-axisy mmetric transition in wide gap cases where the inner radius is comparable to the clearance width. While the transition of SCF has been confirmed experimentally in cases without thermal factor, insufficient knowledge on SCF subject to thermal instability, related to geophysical problems especially in wide gap cases, has been accumulated mainly based on numerical analysis; our motivation is to bridge the knowledge gap by a parameter extension. We reconfirm that the transition under no thermal effect is initiated by a disturbance visualised as a spiral pattern with n arms extending from the equatorial zone to the pole in each hemisphere, at the critical Reynolds number, Recr, as previously reported. With increasing thermal factor, the buoyancy effect assists the system rotation to trigger a transition towards non-axisymmetric states, resulting in a relative decrease of Recr. This is in contrast with the result that the system rotation apparently suppresses via Coriolis effect the transition to the thermally convective states at low Reynolds numbers. The present study elucidates that the existence of the axisymmetric state is restricted within a closed area in the extended parameter space, along the boundary of which the spiral patterns observed experimentally in SCF continually connect to the classical spherical Benard convective states.
A Direct Numerical Simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimar elli et al (2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.
In fully-developed pressure-driven flow, the spreading of a dissolved solute is enhanced in the flow direction due to transverse velocity variations in a phenomenon now commonly referred to as Taylor-Aris dispersion. It is well understood that the ch aracteristics of the dispersion are sensitive to the channels cross-sectional geometry. Here we demonstrate a method for manipulation of dispersion in a single rectangular microchannel via controlled deformation of its upper wall. Using a rapidly prototyped multi-layer microchip, the channel wall is deformed by a controlled pressure source allowing us to characterize the dependence of the dispersion on the deflection of the channel wall and overall channel aspect ratio. For a given channel aspect ratio, an optimal deformation to minimize dispersion is found, consistent with prior numerical and theoretical predictions. Our experimental measurements are also compared directly to numerical predictions using an idealized geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا