ﻻ يوجد ملخص باللغة العربية
Quantum private comparison (QPC) aims to solve Tierce problem based on the laws of quantum mechanics, where the Tierce problem is to determine whether the secret data of two participants are equal without disclosing the data values. In this paper, we study for the fist time the utility of eight-qubit entangled states for QPC by proposing a new protocol. The proposed protocol only adopts necessary quantum technologies such as preparing quantum states and quantum measurements without using any other quantum technologies (e.g., entanglement swapping and unitary operations), which makes the protocol have advantages in quantum device consumption. The measurements adopted only include single-particle measurements, which is easier to implement than entangled-state measurements under the existing technical conditions. The proposed protocol takes advantage of the entanglement characteristics of the eight-qubit entangled state, and uses joint computation, decoy photon technology, the keys generated by quantum key distribution to ensure data privacy.
To evade the well-known impossibility of unconditionally secure quantum two-party computations, previous quantum private comparison protocols have to adopt a third party. Here we study how far we can go with two parties only. We propose a very feasib
Since unconditionally secure quantum two-party computations are known to be impossible, most existing quantum private comparison (QPC) protocols adopted a third party. Recently, we proposed a QPC protocol which involves two parties only, and showed t
In a recent paper (Int. J. Quantum Inf. 17 (2019) 1950026), the authors discussed the shortcomings in the security of a quantum private comparison protocol that we previously proposed. They also proposed a new protocol aimed to avoid these problems.
We consider a scenario of remote state preparation of qubits where a single copy of an entangled state is shared between Alice and several Bobs who sequentially perform unsharp single-particle measurements. We show that a substantial number of Bobs c
We develop a three-party quantum secret sharing protocol based on arbitrary dimensional quantum states. In contrast to the previous quantum secret sharing protocols, the sender can always control the state, just using local operations, for adjusting