ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-party d-level quantum secret sharing protocol

129   0   0.0 ( 0 )
 نشر من قبل Taewan Kim
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a three-party quantum secret sharing protocol based on arbitrary dimensional quantum states. In contrast to the previous quantum secret sharing protocols, the sender can always control the state, just using local operations, for adjusting the correlation of measurement directions of three parties and thus there is no waste of resource due to the discord between the directions. Moreover, our protocol contains the hidden value which enables the sender to leak no information of secret key to the dishonest receiver until the last steps of the procedure.



قيم البحث

اقرأ أيضاً

Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Simi lar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement.
A corresponding comment, raised by Kao and Hwang, claims that the reconstructor Bob1 is unable to obtain the expected secret information in (t, n) Threshold d-level Quantum Secret Sharing (TDQSS)[Scientific Reports, Vol. 7, No. 1 (2017), pp.6366] . I n this reply, we show the TDQSS scheme can obtain the dealers secret information in the condition of adding a step on disentanglement.
The participant attack is the most serious threat for quantum secret-sharing protocols. We present a method to analyze the security of quantum secret-sharing protocols against this kind of attack taking the scheme of Hillery, Buzek, and Berthiaume (H BB) [Phys. Rev. A 59 1829 (1999)] as an example. By distinguishing between two mixed states, we derive the necessary and sufficient conditions under which a dishonest participant can attain all the information without introducing any error, which shows that the HBB protocol is insecure against dishonest participants. It is easy to verify that the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)] is a special example of our results. To demonstrate our results further, we construct an explicit attack scheme according to the necessary and sufficient conditions. Our work completes the security analysis of the HBB protocol, and the method presented may be useful for the analysis of other similar protocols.
In this paper we define a kind of decomposition for a quantum access structure. We propose a conception of minimal maximal quantum access structure and obtain a sufficient and necessary condition for minimal maximal quantum access structure, which sh ows the relationship between the number of minimal authorized sets and that of the players. Moreover, we investigate the construction of efficient quantum secret schemes by using these techniques, a decomposition and minimal maximal quantum access structure. A major advantage of these techniques is that it allows us to construct a method to realize a general quantum access structure. For these quantum access structures, we present two quantum secret schemes via the idea of concatenation or a decomposition of a quantum access structure. As a consequence, the application of these techniques allow us to save more quantum shares and reduce more cost than the existing scheme.
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha t Page scrambling unitaries simultaneously work for all secrets shared by Alice. Using the $I_3$-Ansatz for imperfect sharing schemes we discover examples of VIP sharing schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا