ﻻ يوجد ملخص باللغة العربية
Jets in the vacuum correspond to multi-parton configurations that form via a branching process sensitive to the soft and collinear divergences of QCD. In heavy-ion collisions, energy loss processes that are stimulated via interactions with the medium, affect jet observables in a profound way. Jet fragmentation factorizes into a three-stage process, involving vacuum-like emissions above the medium scale, induced emissions enhanced by the medium length and, finally, long-distance vacuum-like fragmentation. This formalism leads to a novel, non-linear resummation of jet energy loss. In this talk we present new results on the combined effects of small-$R$ resummation and energy loss to compute the $R$-dependent jet spectrum in heavy-ion collisions.
The strong suppression of high-$p_T$ jets in heavy ion collisions is a result of elastic and inelastic energy loss suffered by the jet multi-prong collection of color charges that are resolved by medium interactions. Hence, quenching effects depend o
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c
I look at the renormalization of the medium structure function and a medium induced jet function in a factorized cross section for jet substructure observables in Heavy Ion collisions. This is based on the formalism developed in cite{Vaidya:2020lih},
Studies of fully-reconstructed jets in heavy-ion collisions aim at extracting thermodynamical and transport properties of hot and dense QCD matter. Recently, a plethora of new jet substructure observables have been theoretically and experimentally de