ﻻ يوجد ملخص باللغة العربية
The fundamental quandle is a powerful invariant of knots and links, but it is difficult to describe in detail. It is often useful to look at quotients of the quandle, especially finite quotients. One natural quotient introduced by Joyce is the $n$-quandle. Hoste and Shanahan gave a complete list of the knots and links which have finite $n$-quandles for some $n$. We introduce a generalization of $n$-quandles, denoted $N$-quandles (for a quandle with $k$ algebraic components, $N$ is a $k$-tuple of positive integers). We conjecture a classification of the links with finite $N$-quandles for some $N$, and we prove one direction of the classification.
We compute Cayley graphs and automorphism groups for all finite $n$-quandles of two-bridge and torus knots and links, as well as torus links with an axis.
To better understand the fundamental quandle of a knot or link, it can be useful to look at finite quotients of the quandle. One such quotient is the $n$-quandle (or, when $n=2$, the {em involutory} quandle). Hoste and Shanahan cite{HS2} gave a compl
The paper develops a general theory of orderability of quandles with a focus on link quandles of tame links and gives some general constructions of orderable quandles. We prove that knot quandles of many fibered prime knots are right-orderable, where
Let $n$ be a positive integer. M. K. Dabkowski and J. H. Przytycki introduced the $n$th Burnside group of links which is preserved by $n$-moves, and proved that for any odd prime $p$ there exist links which are not equivalent to trivial links up to $
Motivated by the construction of free quandles and Dehn quandles of orientable surfaces, we introduce Dehn quandles of groups with respect to their subsets. As a characterisation, we prove that Dehn quandles are precisely those quandles which embed n