ترغب بنشر مسار تعليمي؟ اضغط هنا

Dehn quandles of groups and orientable surfaces

108   0   0.0 ( 0 )
 نشر من قبل Hitesh Raundal
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the construction of free quandles and Dehn quandles of orientable surfaces, we introduce Dehn quandles of groups with respect to their subsets. As a characterisation, we prove that Dehn quandles are precisely those quandles which embed naturally into their enveloping groups. We prove that the enveloping group of the Dehn quandle of a given group with respect to its generating set is a central extension of that group, and that enveloping groups of Dehn quandles of Artin groups and link groups with respect to their standard generating sets are the groups themselves. We discuss orderability of Dehn quandles and prove that free involutory quandles are left orderable whereas certain generalised Alexander quandles are bi-orderable. Specialising to surfaces, we give generating sets for Dehn quandles of mapping class groups of orientable surfaces with punctures and compute their automorphism groups. As applications, we recover a result of Niebrzydowski and Przytycki proving that the knot quandle of the trefoil knot is isomorphic to the Dehn quandle of the torus and also extend a result of Yetter on epimorphisms of Dehn quandles of orientable surfaces onto certain involutory homological quandles. Finally, we show that involutory quotients of Dehn quandles of closed orientable surfaces of genus less than four are finite.



قيم البحث

اقرأ أيضاً

150 - J. Scott Carter 2009
Quandles with involutions that satisfy certain conditions, called good involutions, can be used to color non-orientable surface-knots. We use subgroups of signed permutation matrices to construct non-trivial good involutions on extensions of odd orde r dihedral quandles. For the smallest example of order 6 that is an extension of the three-element dihedral quandle, various symmetric quandle homology groups are computed, and applications to the minimal triple point number of surface-knots are given.
113 - John Guaschi 2018
Let M be a compact surface, either orientable or non-orientable. We study the lower central and derived series of the braid and pure braid groups of M in order to determine the values of n for which B_n(M) and P_n(M) are residually nilpotent or resid ually soluble. First, we solve this problem for the case where M is the 2-torus. We then give a general description of these series for an arbitrary semi-direct product that allows us to calculate explicitly the lower central series of P_2(K), where K is the Klein bottle, and to give an estimate for the derived series of P_n(K). Finally, if M is a non-orientable compact surface without boundary, we determine the values of n for which B_n(M) is residually nilpotent or residually soluble in the cases that were not already known in the literature.
We investigate the complexity of finding an embedded non-orientable surface of Euler genus $g$ in a triangulated $3$-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddab ility of complexes into $3$-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.
A longstanding avenue of research in orientable surface topology is to create and enumerate collections of curves in surfaces with certain intersection properties. We look for similar collections of curves in non-orientable surfaces. A surface is non -orientable if and only if it contains a Mobius band. We generalize a construction of Malestein-Rivin-Theran to non-orientable surfaces to exhibit a lower bound for the maximum number of curves that pairwise intersect 0 or 1 times in a generic non-orientable surface.
318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur face group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا