ﻻ يوجد ملخص باللغة العربية
Let $n$ be a positive integer. M. K. Dabkowski and J. H. Przytycki introduced the $n$th Burnside group of links which is preserved by $n$-moves, and proved that for any odd prime $p$ there exist links which are not equivalent to trivial links up to $p$-moves by using their $p$th Burnside groups. This gives counterexamples for the Montesinos-Nakanishi $3$-move conjecture. In general, it is hard to distinguish $p$th Burnside groups of a given link and a trivial link. We give a necessary condition for which $p$th Burnside groups are isomorphic to those of trivial links. The necessary condition gives us an efficient way to distinguish $p$th Burnside groups of a given link and a trivial link. As an application, we show that there exist links, each of which is not equivalent to a trivial link up to $p$-moves for any odd prime $p$.
In a previous paper, the authors proved that Milnor link-homotopy invariants modulo $n$ classify classical string links up to $2n$-move and link-homotopy. As analogues to the welded case, in terms of Milnor invariants, we give here two classification
The Jones polynomial $V_{L}(t)$ for an oriented link $L$ is a one-variable Laurent polynomial link invariant discovered by Jones. For any integer $nge 3$, we show that: (1) the difference of Jones polynomials for two oriented links which are $C_{n}$-
Oikawa defined an unknotting operation on virtual knots, called a CF-move, and gave a classification of 2-component virtual links up to CF-moves by the virtual linking number and his $n$-invariant. In particular, it was proved that a CF-move characte
Dabkowski and Sahi defined an invariant of a link in the $3$-sphere, which is preserved under $4$-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish the Dabkowski-Sahi
The writhe polynomial is a fundamental invariant of an oriented virtual knot. We introduce a kind of local moves for oriented virtual knots called shell moves. The first aim of this paper is to prove that two oriented virtual knots have the same writ