ﻻ يوجد ملخص باللغة العربية
Blockchain-enabled Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO) while keeping data on the mobile devices. Then, the model updates are stored in the blockchain in a decentralized and reliable manner. However, the issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency. The other issue is that the training latency may increase due to the blockchain mining process. To address these issues, the MLMO needs to (i) decide how much data and energy that the mobile devices use for the training and (ii) determine the block generation rate to minimize the system latency, energy consumption, and incentive cost while achieving the target accuracy for the model. Under the uncertainty of the BFL environment, it is challenging for the MLMO to determine the optimal decisions. We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for the MLMO.
Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aw
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its adva
This paper presents a novel and effective deep reinforcement learning (DRL)-based approach to addressing joint resource management (JRM) in a practical multi-carrier non-orthogonal multiple access (MC-NOMA) system, where hardware sensitivity and impe
Federated learning (FL), as a distributed machine learning paradigm, promotes personal privacy by local data processing at each client. However, relying on a centralized server for model aggregation, standard FL is vulnerable to server malfunctions,
Graph neural networks (GNN) have been successful in many fields, and derived various researches and applications in real industries. However, in some privacy sensitive scenarios (like finance, healthcare), training a GNN model centrally faces challen