ترغب بنشر مسار تعليمي؟ اضغط هنا

3d Convex Contact Forms And The Ruelle Invariant

114   0   0.0 ( 0 )
 نشر من قبل Julian Chaidez
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X subset mathbb{R}^4$ be a convex domain with smooth boundary $Y$. We use a relation between the extrinsic curvature of $Y$ and the Ruelle invariant $text{Ru}(Y)$ of the natural Reeb flow on $Y$ to prove that there exist constants $C > c > 0$ independent of $Y$ such that [c < frac{text{Ru}(Y)^2}{text{vol}(X)} cdot text{sys}(Y) < C] Here $text{sys}(Y)$ is the systolic ratio, i.e. the square of the minimal period of a closed Reeb orbit of $Y$ divided by twice the volume of $X$. We then construct dynamically convex contact forms on $S^3$ that violate this bound using methods of Abbondandolo-Bramham-Hryniewicz-Salom~{a}o. These are the first examples of dynamically convex contact $3$-spheres that are not strictly contactomorphic to a convex boundary $Y$.



قيم البحث

اقرأ أيضاً

We prove that Besse contact forms on closed connected 3-manifolds, that is, contact forms with a periodic Reeb flow, are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.
We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective produ cts of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances which also leads to a new description of Patterson-Sullivan distributions.
122 - Luchezar Stoyanov 2013
We prove exponential decay of correlations for Holder continuous observables with respect to any Gibbs measure for contact Anosov flows admitting Pesin sets with exponentially small tails. This is achieved by establishing strong spectral estimates fo r certain Ruelle transfer operators for such flows.
A differential 1-form $alpha$ on a manifold of odd dimension $2n+1$, which satisfies the contact condition $alpha wedge (dalpha)^n eq 0$ almost everywhere, but which vanishes at a point $O$, i.e. $alpha (O) = 0$, is called a textit{singular contact form} at $O$. The aim of this paper is to study local normal forms (formal, analytic and smooth) of such singular contact forms. Our study leads naturally to the study of normal forms of singular primitive 1-forms of a symplectic form $omega$ in dimension $2n$, i.e. differential 1-forms $gamma$ which vanish at a point and such that $dgamma = omega$, and their corresponding conformal vector fields. Our results are an extension and improvement of previous results obtained by other authors, in particular Lychagin cite{Lychagin-1stOrder1975}, Webster cite{Webster-1stOrder1987} and Zhitomirskii cite{Zhito-1Form1986,Zhito-1Form1992}. We make use of both the classical normalization techniques and the toric approach to the normalization problem for dynamical systems cite{Zung_Birkhoff2005, Zung_Integrable2016, Zung_AA2018}.
We consider convex contact spheres $Y$ all of whose Reeb orbits are closed. Any such $Y$ admits a stratification by the periods of closed Reeb orbits. We show that $Y$ resembles a contact ellipsoid: any stratum of $Y$ is an integral homology sphere, and the sequence of Ekeland-Hofer spectral invariants of $Y$ coincides with the full sequence of action values, each one repeated according to its multiplicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا