ﻻ يوجد ملخص باللغة العربية
We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective products of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances which also leads to a new description of Patterson-Sullivan distributions.
Let $X subset mathbb{R}^4$ be a convex domain with smooth boundary $Y$. We use a relation between the extrinsic curvature of $Y$ and the Ruelle invariant $text{Ru}(Y)$ of the natural Reeb flow on $Y$ to prove that there exist constants $C > c > 0$ in
The Korteweg-de Vries (KdV) equation with periodic boundary conditions is considered. The interaction of a periodic solitary wave (cnoidal wave) with high frequency radiation of finite energy ($L^2$-norm) is studied. It is proved that the interaction
We consider an electronic bound state of the usual, non-relativistic, molecular Hamiltonian with Coulomb interactions and fixed nuclei. Away from appropriate collisions, we prove the real analyticity of all the reduced densities and density matrices,
We consider a damped/driven nonlinear Schrodinger equation in an $n$-cube $K^{n}subsetmathbb{R}^n$, $n$ is arbitrary, under Dirichlet boundary conditions [ u_t- uDelta u+i|u|^2u=sqrt{ u}eta(t,x),quad xin K^{n},quad u|_{partial K^{n}}=0, quad u>0, ]
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be des