ﻻ يوجد ملخص باللغة العربية
A differential 1-form $alpha$ on a manifold of odd dimension $2n+1$, which satisfies the contact condition $alpha wedge (dalpha)^n eq 0$ almost everywhere, but which vanishes at a point $O$, i.e. $alpha (O) = 0$, is called a textit{singular contact form} at $O$. The aim of this paper is to study local normal forms (formal, analytic and smooth) of such singular contact forms. Our study leads naturally to the study of normal forms of singular primitive 1-forms of a symplectic form $omega$ in dimension $2n$, i.e. differential 1-forms $gamma$ which vanish at a point and such that $dgamma = omega$, and their corresponding conformal vector fields. Our results are an extension and improvement of previous results obtained by other authors, in particular Lychagin cite{Lychagin-1stOrder1975}, Webster cite{Webster-1stOrder1987} and Zhitomirskii cite{Zhito-1Form1986,Zhito-1Form1992}. We make use of both the classical normalization techniques and the toric approach to the normalization problem for dynamical systems cite{Zung_Birkhoff2005, Zung_Integrable2016, Zung_AA2018}.
Let $X subset mathbb{R}^4$ be a convex domain with smooth boundary $Y$. We use a relation between the extrinsic curvature of $Y$ and the Ruelle invariant $text{Ru}(Y)$ of the natural Reeb flow on $Y$ to prove that there exist constants $C > c > 0$ in
We study invariant systems of PDEs defining Killing vector-valued forms, and then we specialize to Killing spinor-valued forms. We give a detailed treatment of their prolongation and integrability conditions by relating the point-wise values of solut
Motivated by our attempt to recast Cartans work on Lie pseudogroups in a more global and modern language, we are brought back to the question of understanding the linearization of multiplicative forms on groupoids and the corresponding integrability
S. Donaldson introduced a metric on the space of volume forms, with fixed total volume on any compact Riemmanian manifold. With this metric, the space of volume forms formally has non-positive curvature. The geodesic equation is a fully nonlinear deg
Let $W$ be a finite irreducible real reflection group, which is a Coxeter group. We explicitly construct a basis for the module of differential 1-forms with logarithmic poles along the Coxeter arrangement by using a primitive derivation. As a consequ