ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous multiscale methods for the Landau-Lifshitz equation

154   0   0.0 ( 0 )
 نشر من قبل Lena Leitenmaier
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a finite difference heterogeneous multiscale method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient. The approach combines a higher order discretization and artificial damping in the so-called micro problem to obtain an efficient implementation. The influence of different parameters on the resulting approximation error is discussed. Numerical examples for both periodic as well as more general coefficients are given to demonstrate the functionality of the approach.



قيم البحث

اقرأ أيضاً

In this paper, we consider several possible ways to set up Heterogeneous Multiscale Methods for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, which can be seen as a means to modeling rapidly varying ferromagnetic mater ials. We then prove estimates for the errors introduced when approximating the relevant quantity in each of the models given a periodic problem, using averaging in time and space of the solution to a corresponding micro problem. In our setup, the Landau-Lifshitz equation with highly oscillatory coefficient is chosen as the micro problem for all models. We then show that the averaging errors only depend on $varepsilon$, the size of the microscopic oscillations, as well as the size of the averaging domain in time and space and the choice of averaging kernels.
120 - Y. Chen , T.Y. Hou , 2021
In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achiev e a nearly exponential rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh size $O(1/k)$ without suffering from the well-known pollution effect. The key idea is a coarse-fine scale decomposition of the solution space that adapts to the media property and wavenumber; this decomposition is inspired by the multiscale finite element method. We show that the coarse part is of low complexity in the sense that it can be approximated with a nearly exponential rate of convergence via local basis functions, while the fine part is local such that it can be computed efficiently using the local information of the right hand side. The combination of the two parts yields the overall nearly exponential rate of convergence. We demonstrate the effectiveness of our methods theoretically and numerically; an exponential rate of convergence is consistently observed and confirmed. In addition, we observe the robustness of our methods regarding the high contrast in the media numerically.
In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that : one wave propagation direction can be taken as an evolution direction, and we then can discretize it using a classical scheme like Backward Euler. Consequently, we obtain a set of quasi-gas-dynamic (QGD) models with different heterogeneous permeability fields. Then, we employ constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) to perform spatial discretization for the problem. The resulting system can be solved by combining the central difference in time evolution. Due to the variable media, we apply the technique of proper orthogonal decomposition (POD) to further the dimension of the problem and solve the corresponding model problem in the POD space instead of in the whole multiscale space spanned by all possible multiscale basis functions. We prove the stability of the full discretization scheme and give the convergence analysis of the proposed approximation scheme. Numerical results verify the effectiveness of the proposed method.
113 - Panchi Li , Lei Yang , Jin Lan 2021
Recent theoretical and experimental advances show that the inertia of magnetization emerges at sub-picoseconds and contributes to the ultrafast magnetization dynamics which cannot be captured intrinsically by the LLG equation. Therefore, as a general ization, the inertial Landau-Lifshitz-Gilbert (iLLG) equation is proposed to model the ultrafast magnetization dynamics. Mathematically, the LLG equation is a nonlinear system of parabolic type with (possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed hyperbolic-parabolic type with degeneracy, and exhibits more complicated structures. It behaves like a hyperbolic system at the sub-picosecond scale while behaves like a parabolic system at larger timescales. Such hybrid behaviors impose additional difficulties on designing numerical methods for the iLLG equation. In this work, we propose a second-order semi-implicit scheme to solve the iLLG equation. The second temporal derivative of magnetization is approximated by the standard centered difference scheme and the first derivative is approximated by the midpoint scheme involving three time steps. The nonlinear terms are treated semi-implicitly using one-sided interpolation with the second-order accuracy. At each step, the unconditionally unique solvability of the unsymmetric linear system of equations in the proposed method is proved with a detailed discussion on the condition number. Numerically, the second-order accuracy in both time and space is verified. Using the proposed method, the inertial effect of ferromagnetics is observed in micromagnetics simulations at small timescales, in consistency with the hyperbolic property of the model at sub-picoseconds. For long time simulations, the results of the iLLG model are in nice agreements with those of the LLG model, in consistency with the parabolic feature of the iLLG model at larger timescales.
336 - Michele Ruggeri 2021
We consider the numerical approximation of the inertial Landau-Lifshitz-Gilbert (iLLG) equation, which describes the dynamics of the magnetization in ferromagnetic materials at subpicosecond time scales. We propose and analyze two fully discrete nume rical schemes based on two different approaches: The first method is based on a reformulation of the problem as a linear constrained variational formulation for the time derivative of the magnetization. The second method exploits a reformulation of the problem as a first order system in time for the magnetization and the angular momentum. Both schemes are implicit, based on first-order finite elements, and the constructed numerical approximations satisfy the inherent unit-length constraint of iLLG at the vertices of the underlying mesh. For both schemes, we establish a discrete energy law and prove convergence of the approximations towards a weak solution of the problem. Numerical experiments validate the theoretical results and show the applicability of the methods for the simulation of ultrafast magnetic processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا