ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Decomposition of Twisted Graphene Multilayers with Arbitrary Stacking

178   0   0.0 ( 0 )
 نشر من قبل QuanSheng Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate the chiral decomposition rules that govern the electronic structure of a broad family of twisted $N+M$ multilayer graphene configurations that combine arbitrary stacking order and a mutual twist. We show that at the magic angle in the chiral limit the low-energy bands of such systems are composed of chiral pseudospin doublets which are energetically entangled with two flat bands per valley induced by the moire superlattice potential. The analytic analysis is supported by explicit numerical calculations based on realistic parameterization. We further show that applying vertical displacement fields can open up energy gaps between the pseudospin doublets and the two flat bands, such that the flat bands may carry nonzero valley Chern numbers. These results provide guidelines for the rational design of various topological and correlated states in generic twisted graphene multilayers.

قيم البحث

اقرأ أيضاً

The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating edge modes on opposite edges compensated by a counterpropagating bulk current, are also predicted, but, to date, no realization of such states in a solid-state system has been found. Here, we put forward a procedure to realize antichiral states in twisted van der Waals multilayers, by combining the electronic Dirac-cone spectra of each layer through the combination of the orbital moire superstructure, an in-plane magnetic field, and inter-layer bias voltage. In particular, we demonstrate that a twisted van der Waals heterostructure consisting of graphene/two layers of hexagonal boron nitride [(hBN)$_2$]/graphene will show antichiral states at in-plane magnetic fields of 8 T, for a rotation angle of 0.2$^{circ}$ between the graphene layers. Our findings engender a controllable procedure to engineer antichiral states in solid-state systems, as well as in quantum engineered metamaterials.
352 - W. Bao , L. Jing , Y. Lee 2011
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki ng orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV characteristics at low temperature and thermally activated conduction at higher temperatures, indicating an intrinsic gap ~6 meV. In magnetic fields, in addition to an insulating state at filling factor { u}=0, ABC TLG exhibits quantum Hall plateaus at { u}=-30, pm 18, pm 9, each of which splits into 3 branches at higher fields. Such splittings are signatures of the Lifshitz transition induced by trigonal warping, found only in ABC TLG, and in semi-quantitative agreement with theory. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discover y of a new member of the family, density-wave states, in double bilayer graphene twisted to 2.37{deg}. At this angle the moire states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with density-wave states, for equal electron and hole densities. These states can be tuned without introducing chemical dopants, thus opening the door to a new class of fundamental studies of density-waves and their interplay with superconductivity and other types of order, a central issue in quantum matter physics.
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha s opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.
A detailed understanding of interacting electrons in twisted bilayer graphene (tBLG) near the magic angle is required to gain insights into the physical origin of the observed broken symmetry phases. Here, we present extensive atomistic Hartree theor y calculations of the electronic properties of tBLG in the (semi-)metallic phase as function of doping and twist angle. Specifically, we calculate quasiparticle properties, such as the band structure, density of states (DOS) and local density of states (LDOS), which are directly accessible in photoemission and tunnelling spectroscopy experiments. We find that quasiparticle properties change significantly upon doping - an effect which is not captured by tight-binding theory. In particular, we observe that the partially occupied bands flatten significantly which enhances the density of states at the Fermi level. We predict a clear signature of this band flattening in the LDOS in the AB/BA regions of tBLG which can be tested in scanning tunneling experiments. We also study the dependence of quasiparticle properties on the dielectric environment of tBLG and discover that these properties are surprisingly robust as a consequence of the strong internal screening. Finally, we present a simple analytical expression for the Hartree potential which enables the determination of quasiparticle properties without the need for self-consistent calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا