ﻻ يوجد ملخص باللغة العربية
The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating edge modes on opposite edges compensated by a counterpropagating bulk current, are also predicted, but, to date, no realization of such states in a solid-state system has been found. Here, we put forward a procedure to realize antichiral states in twisted van der Waals multilayers, by combining the electronic Dirac-cone spectra of each layer through the combination of the orbital moire superstructure, an in-plane magnetic field, and inter-layer bias voltage. In particular, we demonstrate that a twisted van der Waals heterostructure consisting of graphene/two layers of hexagonal boron nitride [(hBN)$_2$]/graphene will show antichiral states at in-plane magnetic fields of 8 T, for a rotation angle of 0.2$^{circ}$ between the graphene layers. Our findings engender a controllable procedure to engineer antichiral states in solid-state systems, as well as in quantum engineered metamaterials.
We formulate the chiral decomposition rules that govern the electronic structure of a broad family of twisted $N+M$ multilayer graphene configurations that combine arbitrary stacking order and a mutual twist. We show that at the magic angle in the ch
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discover
Twisting two layers into a magic angle (MA) of ~1.1{deg} is found essential to create low energy flat bands and the resulting correlated insulating, superconducting, and magnetic phases in twisted bilayer graphene (TBG). While most of previous works
The electronic properties of graphene superlattices have attracted intense interest that was further stimulated by the recent observation of novel many-body states at magic angles in twisted bilayer graphene (BLG). For very small (marginal) twist ang
A single graphene layer placed between two parallel Ni(111) surfaces screens the strong attractive force and results in a significant reduction of adhesion and sliding friction. When two graphene layers are inserted, each graphene is attached to one