ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Structures in Earth Observation Data with Gaussian Processes

156   0   0.0 ( 0 )
 نشر من قبل Gustau Camps-Valls
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaussian Processes (GPs) has experienced tremendous success in geoscience in general and for bio-geophysical parameter retrieval in the last years. GPs constitute a solid Bayesian framework to formulate many function approximation problems consistently. This paper reviews the main theoretical GP developments in the field. We review new algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals to transport GP models in space and time. All these developments are illustrated in the field of geoscience and remote sensing at a local and global scales through a set of illustrative examples.



قيم البحث

اقرأ أيضاً

Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding result s in the estimation of bio-geo-physical variables from the acquired images at local and global scales in a time-resolved manner. GPs provide not only accurate estimates but also principled uncertainty estimates for the predictions, can easily accommodate multimodal data coming from different sensors and from multitemporal acquisitions, allow the introduction of physical knowledge, and a formal treatment of uncertainty quantification and error propagation. Despite great advances in forward and inverse modelling, GP models still have to face important challenges that are revised in this perspective paper. GP models should evolve towards data-driven physics-aware models that respect signal characteristics, be consistent with elementary laws of physics, and move from pure regression to observational causal inference.
We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-sup ervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.
We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes. The proposed approach: (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs; (2) has guaranteed convergence for a very general class of PDEs, and comes equipped with a path to compute error bounds for specific PDE approximations; (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. The main idea of our method is to approximate the solution of a given PDE as the maximum a posteriori (MAP) estimator of a Gaussian process conditioned on solving the PDE at a finite number of collocation points. Although this optimization problem is infinite-dimensional, it can be reduced to a finite-dimensional one by introducing additional variables corresponding to the values of the derivatives of the solution at collocation points; this generalizes the representer theorem arising in Gaussian process regression. The reduced optimization problem has the form of a quadratic objective function subject to nonlinear constraints; it is solved with a variant of the Gauss--Newton method. The resulting algorithm (a) can be interpreted as solving successive linearizations of the nonlinear PDE, and (b) in practice is found to converge in a small number of iterations (2 to 10), for a wide range of PDEs. Most traditional approaches to IPs interleave parameter updates with numerical solution of the PDE; our algorithm solves for both parameter and PDE solution simultaneously. Experiments on nonlinear elliptic PDEs, Burgers equation, a regularized Eikonal equation, and an IP for permeability identification in Darcy flow illustrate the efficacy and scope of our framework.
The data association problem is concerned with separating data coming from different generating processes, for example when data come from different data sources, contain significant noise, or exhibit multimodality. We present a fully Bayesian approa ch to this problem. Our model is capable of simultaneously solving the data association problem and the induced supervised learning problems. Underpinning our approach is the use of Gaussian process priors to encode the structure of both the data and the data associations. We present an efficient learning scheme based on doubly stochastic variational inference and discuss how it can be applied to deep Gaussian process priors.
We consider the problem of optimizing a vector-valued objective function $boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({cal X},d)$ of designs. We assume that $boldsymbol{f}$ is not know n beforehand and that evaluating $boldsymbol{f}$ at design $x$ results in a noisy observation of $boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${cal X}$ is large, we propose an algorithm, called Adaptive $boldsymbol{epsilon}$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({cal X},d)$ to learn fast. In essence, Adaptive $boldsymbol{epsilon}$-PAL employs a tree-based adaptive discretization technique to identify an $boldsymbol{epsilon}$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $boldsymbol{epsilon}$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods on several benchmark datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا