ﻻ يوجد ملخص باللغة العربية
We consider the problem of optimizing a vector-valued objective function $boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({cal X},d)$ of designs. We assume that $boldsymbol{f}$ is not known beforehand and that evaluating $boldsymbol{f}$ at design $x$ results in a noisy observation of $boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${cal X}$ is large, we propose an algorithm, called Adaptive $boldsymbol{epsilon}$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({cal X},d)$ to learn fast. In essence, Adaptive $boldsymbol{epsilon}$-PAL employs a tree-based adaptive discretization technique to identify an $boldsymbol{epsilon}$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $boldsymbol{epsilon}$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods on several benchmark datasets.
Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding result
We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-sup
Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, which have
We present an end-to-end statistical framework for personalized, accurate, and minimally invasive modeling of female reproductive hormonal patterns. Reconstructing and forecasting the evolution of hormonal dynamics is a challenging task, but a critic
We introduce the technique of adaptive discretization to design an efficient model-based episodic reinforcement learning algorithm in large (potentially continuous) state-action spaces. Our algorithm is based on optimistic one-step value iteration ex