ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving and Learning Nonlinear PDEs with Gaussian Processes

120   0   0.0 ( 0 )
 نشر من قبل Houman Owhadi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes. The proposed approach: (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs; (2) has guaranteed convergence for a very general class of PDEs, and comes equipped with a path to compute error bounds for specific PDE approximations; (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. The main idea of our method is to approximate the solution of a given PDE as the maximum a posteriori (MAP) estimator of a Gaussian process conditioned on solving the PDE at a finite number of collocation points. Although this optimization problem is infinite-dimensional, it can be reduced to a finite-dimensional one by introducing additional variables corresponding to the values of the derivatives of the solution at collocation points; this generalizes the representer theorem arising in Gaussian process regression. The reduced optimization problem has the form of a quadratic objective function subject to nonlinear constraints; it is solved with a variant of the Gauss--Newton method. The resulting algorithm (a) can be interpreted as solving successive linearizations of the nonlinear PDE, and (b) in practice is found to converge in a small number of iterations (2 to 10), for a wide range of PDEs. Most traditional approaches to IPs interleave parameter updates with numerical solution of the PDE; our algorithm solves for both parameter and PDE solution simultaneously. Experiments on nonlinear elliptic PDEs, Burgers equation, a regularized Eikonal equation, and an IP for permeability identification in Darcy flow illustrate the efficacy and scope of our framework.


قيم البحث

اقرأ أيضاً

Recent works have shown that deep neural networks can be employed to solve partial differential equations, giving rise to the framework of physics informed neural networks. We introduce a generalization for these methods that manifests as a scaling p arameter which balances the relative importance of the different constraints imposed by partial differential equations. A mathematical motivation of these generalized methods is provided, which shows that for linear and well-posed partial differential equations, the functional form is convex. We then derive a choice for the scaling parameter that is optimal with respect to a measure of relative error. Because this optimal choice relies on having full knowledge of analytical solutions, we also propose a heuristic method to approximate this optimal choice. The proposed methods are compared numerically to the original methods on a variety of model partial differential equations, with the number of data points being updated adaptively. For several problems, including high-dimensional PDEs the proposed methods are shown to significantly enhance accuracy.
This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a superv ised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural-network type functions. In a well-posed elliptic PDE setting, when the hypothesis space consists of feedforward neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, the gradient descent method can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions and the effectiveness of the proposed solver in avoiding numerical issues that hampers the traditional approach when a large data set becomes available, e.g., large matrix inversion.
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM), and its local kernel variants, to approximate second-order differential operators defined on smooth manifolds with boundaries that naturally arise in elliptic PD E models. To achieve this goal, we introduce the Ghost Point Diffusion Maps (GPDM) estimator on an extended manifold, identified by the set of point clouds on the unknown original manifold together with a set of ghost points, specified along the estimated tangential direction at the sampled points at the boundary. The resulting GPDM estimator restricts the standard DM matrix to a set of extrapolation equations that estimates the function values at the ghost points. This adjustment is analogous to the classical ghost point method in finite-difference scheme for solving PDEs on flat domain. As opposed to the classical DM which diverges near the boundary, the proposed GPDM estimator converges pointwise even near the boundary. Applying the consistent GPDM estimator to solve the well-posed elliptic PDEs with classical boundary conditions (Dirichlet, Neumann, and Robin), we establish the convergence of the approximate solution under appropriate smoothness assumptions. We numerically validate the proposed mesh-free PDE solver on various problems defined on simple sub-manifolds embedded in Euclidean spaces as well as on an unknown manifold. Numerically, we also found that the GPDM is more accurate compared to DM in solving elliptic eigenvalue problems on bounded smooth manifolds.
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We prov ide a new perspective, that is, a different type of architecture through exploring the possible connections between traditional numerical methods (such as finite difference schemes) and deep neural networks, particularly convolutional and fully-connected neural networks. Our proposed approach will show its effectiveness and efficiency in solving PDE models with an integral form, in particular, we test on one-way wave equations and system of conservation laws.
Learning time-dependent partial differential equations (PDEs) that govern evolutionary observations is one of the core challenges for data-driven inference in many fields. In this work, we propose to capture the essential dynamics of numerically chal lenging PDEs arising in multiscale modeling and simulation -- kinetic equations. These equations are usually nonlocal and contain scales/parameters that vary by several orders of magnitude. We introduce an efficient framework, Densely Connected Recurrent Neural Networks (DC-RNNs), by incorporating a multiscale ansatz and high-order implicit-explicit (IMEX) schemes into RNN structure design to identify analytic representations of multiscale and nonlocal PDEs from discrete-time observations generated from heterogeneous experiments. If present in the observed data, our DC-RNN can capture transport operators, nonlocal projection or collision operators, macroscopic diffusion limit, and other dynamics. We provide numerical results to demonstrate the advantage of our proposed framework and compare it with existing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا