ترغب بنشر مسار تعليمي؟ اضغط هنا

Rank-One Measurements of Low-Rank PSD Matrices Have Small Feasible Sets

100   0   0.0 ( 0 )
 نشر من قبل T. Mitchell Roddenberry
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the role of the constraint set in determining the solution to low-rank, positive semidefinite (PSD) matrix sensing problems. The setting we consider involves rank-one sensing matrices: In particular, given a set of rank-one projections of an approximately low-rank PSD matrix, we characterize the radius of the set of PSD matrices that satisfy the measurements. This result yields a sampling rate to guarantee singleton solution sets when the true matrix is exactly low-rank, such that the choice of the objective function or the algorithm to be used is inconsequential in its recovery. We discuss applications of this contribution and compare it to recent literature regarding implicit regularization for similar problems. We demonstrate practical implications of this result by applying conic projection methods for PSD matrix recovery without incorporating low-rank regularization.



قيم البحث

اقرأ أيضاً

The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trac e regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on the rank and other complexity parameters. Such bounds are established for several statistically relevant distances, including quant
Low rank tensor learning, such as tensor completion and multilinear multitask learning, has received much attention in recent years. In this paper, we propose higher order matching pursuit for low rank tensor learning problems with a convex or a nonc onvex cost function, which is a generalization of the matching pursuit type methods. At each iteration, the main cost of the proposed methods is only to compute a rank-one tensor, which can be done efficiently, making the proposed methods scalable to large scale problems. Moreover, storing the resulting rank-one tensors is of low storage requirement, which can help to break the curse of dimensionality. The linear convergence rate of the proposed methods is established in various circumstances. Along with the main methods, we also provide a method of low computational complexity for approximately computing the rank-one tensors, with provable approximation ratio, which helps to improve the efficiency of the main methods and to analyze the convergence rate. Experimental results on synthetic as well as real datasets verify the efficiency and effectiveness of the proposed methods.
This note studies the worst-case recovery error of low-rank and bisparse matrices as a function of the number of one-bit measurements used to acquire them. First, by way of the concept of consistency width, precise estimates are given on how fast the recovery error can in theory decay. Next, an idealized recovery method is proved to reach the fourth-root of the optimal decay rate for Gaussian sensing schemes. This idealized method being impractical, an implementable recovery algorithm is finally proposed in the context of factorized Gaussian sensing schemes. It is shown to provide a recovery error decaying as the sixth-root of the optimal rate.
A distance matrix $A in mathbb R^{n times m}$ represents all pairwise distances, $A_{ij}=mathrm{d}(x_i,y_j)$, between two point sets $x_1,...,x_n$ and $y_1,...,y_m$ in an arbitrary metric space $(mathcal Z, mathrm{d})$. Such matrices arise in various computational contexts such as learning image manifolds, handwriting recognition, and multi-dimensional unfolding. In this work we study algorithms for low-rank approximation of distance matrices. Recent work by Bakshi and Woodruff (NeurIPS 2018) showed it is possible to compute a rank-$k$ approximation of a distance matrix in time $O((n+m)^{1+gamma}) cdot mathrm{poly}(k,1/epsilon)$, where $epsilon>0$ is an error parameter and $gamma>0$ is an arbitrarily small constant. Notably, their bound is sublinear in the matrix size, which is unachievable for general matrices. We present an algorithm that is both simpler and more efficient. It reads only $O((n+m) k/epsilon)$ entries of the input matrix, and has a running time of $O(n+m) cdot mathrm{poly}(k,1/epsilon)$. We complement the sample complexity of our algorithm with a matching lower bound on the number of entries that must be read by any algorithm. We provide experimental results to validate the approximation quality and running time of our algorithm.
Existing results for low-rank matrix recovery largely focus on quadratic loss, which enjoys favorable properties such as restricted strong convexity/smoothness (RSC/RSM) and well conditioning over all low rank matrices. However, many interesting prob lems involve non-quadratic loss do not satisfy such properties; examples including one-bit matrix sensing, one-bit matrix completion, and rank aggregation. For these problems, standard nonconvex approaches such as projected gradient with rank constraint alone (a.k.a. iterative hard thresholding) and Burer-Monteiro approach may perform badly in practice and have no satisfactory theory in guaranteeing global and efficient convergence. In this paper, we show that the critical component in low-rank recovery with non-quadratic loss is a regularity projection oracle, which restricts iterates to low-rank matrix within an appropriate bounded set, over which the loss function is well behaved and satisfies a set of relaxed RSC/RSM conditions. Accordingly, we analyze an (averaged) projected gradient method equipped with such an oracle, and prove that it converges globally and linearly. Our results apply to a wide range of non-quadratic problems including rank aggregation, one bit matrix sensing/completion, and more broadly generalized linear models with rank constraint.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا