ﻻ يوجد ملخص باللغة العربية
Few-shot algorithms aim at learning new tasks provided only a handful of training examples. In this work we investigate few-shot learning in the setting where the data points are sequences of tokens and propose an efficient learning algorithm based on Transformers. In the simplest setting, we append a token to an input sequence which represents the particular task to be undertaken, and show that the embedding of this token can be optimized on the fly given few labeled examples. Our approach does not require complicated changes to the model architecture such as adapter layers nor computing second order derivatives as is currently popular in the meta-learning and few-shot learning literature. We demonstrate our approach on a variety of tasks, and analyze the generalization properties of several model variants and baseline approaches. In particular, we show that compositional task descriptors can improve performance. Experiments show that our approach works at least as well as other methods, while being more computationally efficient.
End-to-end approaches have recently become popular as a means of simplifying the training and deployment of speech recognition systems. However, they often require large amounts of data to perform well on large vocabulary tasks. With the aim of makin
We are interested in developing a unified machine learning model over many mobile devices for practical learning tasks, where each device only has very few training data. This is a commonly encountered situation in mobile computing scenarios, where d
In this article, we consider the problem of few-shot learning for classification. We assume a network trained for base categories with a large number of training examples, and we aim to add novel categories to it that have only a few, e.g., one or fi
Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the rea
We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning (FSL) methods: the pre-trained knowledge is indeed a confounder that limits the performance. This finding is rooted from our causal assumption: a Structural Causal Model (SC