ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-shot learning with attention-based sequence-to-sequence models

170   0   0.0 ( 0 )
 نشر من قبل Bertrand Higy
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end approaches have recently become popular as a means of simplifying the training and deployment of speech recognition systems. However, they often require large amounts of data to perform well on large vocabulary tasks. With the aim of making end-to-end approaches usable by a broader range of researchers, we explore the potential to use end-to-end methods in small vocabulary contexts where smaller datasets may be used. A significant drawback of small-vocabulary systems is the difficulty of expanding the vocabulary beyond the original training samples -- therefore we also study strategies to extend the vocabulary with only few examples per new class (few-shot learning). Our results show that an attention-based encoder-decoder can be competitive against a strong baseline on a small vocabulary keyword classification task, reaching 97.5% of accuracy on Tensorflows Speech Commands dataset. It also shows promising results on the few-shot learning problem where a simple strategy achieved 68.8% of accuracy on new keywords with only 10 examples for each new class. This score goes up to 88.4% with a larger set of 100 examples.


قيم البحث

اقرأ أيضاً

Sequence-to-sequence models, such as attention-based models in automatic speech recognition (ASR), are typically trained to optimize the cross-entropy criterion which corresponds to improving the log-likelihood of the data. However, system performanc e is usually measured in terms of word error rate (WER), not log-likelihood. Traditional ASR systems benefit from discriminative sequence training which optimizes criteria such as the state-level minimum Bayes risk (sMBR) which are more closely related to WER. In the present work, we explore techniques to train attention-based models to directly minimize expected word error rate. We consider two loss functions which approximate the expected number of word errors: either by sampling from the model, or by using N-best lists of decoded hypotheses, which we find to be more effective than the sampling-based method. In experimental evaluations, we find that the proposed training procedure improves performance by up to 8.2% relative to the baseline system. This allows us to train grapheme-based, uni-directional attention-based models which match the performance of a traditional, state-of-the-art, discriminative sequence-trained system on a mobile voice-search task.
Few-shot algorithms aim at learning new tasks provided only a handful of training examples. In this work we investigate few-shot learning in the setting where the data points are sequences of tokens and propose an efficient learning algorithm based o n Transformers. In the simplest setting, we append a token to an input sequence which represents the particular task to be undertaken, and show that the embedding of this token can be optimized on the fly given few labeled examples. Our approach does not require complicated changes to the model architecture such as adapter layers nor computing second order derivatives as is currently popular in the meta-learning and few-shot learning literature. We demonstrate our approach on a variety of tasks, and analyze the generalization properties of several model variants and baseline approaches. In particular, we show that compositional task descriptors can improve performance. Experiments show that our approach works at least as well as other methods, while being more computationally efficient.
In sequence to sequence learning, the self-attention mechanism proves to be highly effective, and achieves significant improvements in many tasks. However, the self-attention mechanism is not without its own flaws. Although self-attention can model e xtremely long dependencies, the attention in deep layers tends to overconcentrate on a single token, leading to insufficient use of local information and difficultly in representing long sequences. In this work, we explore parallel multi-scale representation learning on sequence data, striving to capture both long-range and short-range language structures. To this end, we propose the Parallel MUlti-Scale attEntion (MUSE) and MUSE-simple. MUSE-simple contains the basic idea of parallel multi-scale sequence representation learning, and it encodes the sequence in parallel, in terms of different scales with the help from self-attention, and pointwise transformation. MUSE builds on MUSE-simple and explores combining convolution and self-attention for learning sequence representations from more different scales. We focus on machine translation and the proposed approach achieves substantial performance improvements over Transformer, especially on long sequences. More importantly, we find that although conceptually simple, its success in practice requires intricate considerations, and the multi-scale attention must build on unified semantic space. Under common setting, the proposed model achieves substantial performance and outperforms all previous models on three main machine translation tasks. In addition, MUSE has potential for accelerating inference due to its parallelism. Code will be available at https://github.com/lancopku/MUSE
Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was teful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be emplo yed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training (MRT) on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا