ترغب بنشر مسار تعليمي؟ اضغط هنا

Decimated Framelet System on Graphs and Fast G-Framelet Transforms

123   0   0.0 ( 0 )
 نشر من قبل Bingxin Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph representation learning has many real-world applications, from super-resolution imaging, 3D computer vision to drug repurposing, protein classification, social networks analysis. An adequate representation of graph data is vital to the learning performance of a statistical or machine learning model for graph-structured data. In this paper, we propose a novel multiscale representation system for graph data, called decimated framelets, which form a localized tight frame on the graph. The decimated framelet system allows storage of the graph data representation on a coarse-grained chain and processes the graph data at multi scales where at each scale, the data is stored at a subgraph. Based on this, we then establish decimated G-framelet transforms for the decomposition and reconstruction of the graph data at multi resolutions via a constructive data-driven filter bank. The graph framelets are built on a chain-based orthonormal basis that supports fast graph Fourier transforms. From this, we give a fast algorithm for the decimated G-framelet transforms, or FGT, that has linear computational complexity O(N) for a graph of size N. The theory of decimated framelets and FGT is verified with numerical examples for random graphs. The effectiveness is demonstrated by real-world applications, including multiresolution analysis for traffic network, and graph neural networks for graph classification tasks.



قيم البحث

اقرأ أيضاً

89 - Zhao He , Ya-Nan Zhu , Suhao Qiu 2021
Objective: Interventional MRI (i-MRI) is crucial for MR image-guided therapy. Current image reconstruction methods for dynamic MR imaging are mostly retrospective that may not be suitable for i-MRI in real-time. Therefore, an algorithm to reconstruct images without a temporal pattern as in dynamic imaging is needed for i-MRI. Methods: We proposed a low-rank and sparsity (LS) decomposition algorithm with framelet transform to reconstruct the interventional feature with a high temporal resolution. Different from the existing LS based algorithm, we utilized the spatial sparsity of both the low-rank and sparsity components. We also used a primal dual fixed point (PDFP) method for optimization of the objective function to avoid solving sub-problems. Intervention experiments with gelatin and brain phantoms were carried out for validation. Results: The LS decomposition with framelet transform and PDFP could provide the best reconstruction performance compared with those without. Satisfying reconstruction results were obtained with only 10 radial spokes for a temporal resolution of 60 ms. Conclusion and Significance: The proposed method has the potential for i-MRI in many different application scenarios.
Given an arbitrary matrix $Ainmathbb{R}^{ntimes n}$, we consider the fundamental problem of computing $Ax$ for any $xinmathbb{R}^n$ such that $Ax$ is $s$-sparse. While fast algorithms exist for particular choices of $A$, such as the discrete Fourier transform, there is currently no $o(n^2)$ algorithm that treats the unstructured case. In this paper, we devise a randomized approach to tackle the unstructured case. Our method relies on a representation of $A$ in terms of certain real-valued mutually unbiased bases derived from Kerdock sets. In the preprocessing phase of our algorithm, we compute this representation of $A$ in $O(n^3log n)$ operations. Next, given any unit vector $xinmathbb{R}^n$ such that $Ax$ is $s$-sparse, our randomized fast transform uses this representation of $A$ to compute the entrywise $epsilon$-hard threshold of $Ax$ with high probability in only $O(sn + epsilon^{-2}|A|_{2toinfty}^2nlog n)$ operations. In addition to a performance guarantee, we provide numerical results that demonstrate the plausibility of real-world implementation of our algorithm.
102 - Matthew Thorpe , Bao Wang 2021
Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for classifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learning (ML) algorithms has attracted large amounts of attent ion from different research communities due to its crucial importance in many security-critical applied domains. There is great interest in the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we provide the first adversarial robust certification for the GL classifier. More precisely we quantitatively bound the difference in the classification accuracy of the GL classifier before and after an adversarial attack. Numerically, we validate our theoretical certification results and show that leveraging existing adversarial defenses for the $k$-nearest neighbor classifier can remarkably improve the robustness of the GL classifier.
184 - Yu Tong , Dong An , Nathan Wiebe 2020
Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion, which can be used as a precondi tioner for solving quantum linear systems. The key idea of fast inversion is to directly block-encode a matrix inverse through a quantum circuit implementing the inversion of eigenvalues via classical arithmetics. We demonstrate the application of preconditioned linear system solvers for computing single-particle Greens functions of quantum many-body systems, which are widely used in quantum physics, chemistry, and materials science. We analyze the complexities in three scenarios: the Hubbard model, the quantum many-body Hamiltonian in the planewave-dual basis, and the Schwinger model. We also provide a method for performing Greens function calculation in second quantization within a fixed particle manifold and note that this approach may be valuable for simulation more broadly. Besides solving linear systems, fast inversion also allows us to develop fast algorithms for computing matrix functions, such as the efficient preparation of Gibbs states. We introduce two efficient approaches for such a task, based on the contour integral formulation and the inverse transform respectively.
For the high dimensional data representation, nonnegative tensor ring (NTR) decomposition equipped with manifold learning has become a promising model to exploit the multi-dimensional structure and extract the feature from tensor data. However, the e xisting methods such as graph regularized tensor ring decomposition (GNTR) only models the pair-wise similarities of objects. For tensor data with complex manifold structure, the graph can not exactly construct similarity relationships. In this paper, in order to effectively utilize the higher-dimensional and complicated similarities among objects, we introduce hypergraph to the framework of NTR to further enhance the feature extraction, upon which a hypergraph regularized nonnegative tensor ring decomposition (HGNTR) method is developed. To reduce the computational complexity and suppress the noise, we apply the low-rank approximation trick to accelerate HGNTR (called LraHGNTR). Our experimental results show that compared with other state-of-the-art algorithms, the proposed HGNTR and LraHGNTR can achieve higher performance in clustering tasks, in addition, LraHGNTR can greatly reduce running time without decreasing accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا