ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Certification for Laplace Learning on Geometric Graphs

103   0   0.0 ( 0 )
 نشر من قبل Bao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for classifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learning (ML) algorithms has attracted large amounts of attention from different research communities due to its crucial importance in many security-critical applied domains. There is great interest in the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we provide the first adversarial robust certification for the GL classifier. More precisely we quantitatively bound the difference in the classification accuracy of the GL classifier before and after an adversarial attack. Numerically, we validate our theoretical certification results and show that leveraging existing adversarial defenses for the $k$-nearest neighbor classifier can remarkably improve the robustness of the GL classifier.

قيم البحث

اقرأ أيضاً

80 - Xu Chen , Ya Zhang , Ivor Tsang 2020
Graph neural networks (GNN), as a popular methodology for node representation learning on graphs, currently mainly focus on preserving the smoothness and identifiability of node representations. A robust node representation on graphs should further h old the stability property which means a node representation is resistant to slight perturbations on the input. In this paper, we introduce the stability of node representations in addition to the smoothness and identifiability, and develop a novel method called contrastive graph neural networks (CGNN) that learns robust node representations in an unsupervised manner. Specifically, CGNN maintains the stability and identifiability by a contrastive learning objective, while preserving the smoothness with existing GNN models. Furthermore, the proposed method is a generic framework that can be equipped with many other backbone models (e.g. GCN, GraphSage and GAT). Extensive experiments on four benchmarks under both transductive and inductive learning setups demonstrate the effectiveness of our method in comparison with recent supervised and unsupervised models.
Graph representation learning has many real-world applications, from super-resolution imaging, 3D computer vision to drug repurposing, protein classification, social networks analysis. An adequate representation of graph data is vital to the learning performance of a statistical or machine learning model for graph-structured data. In this paper, we propose a novel multiscale representation system for graph data, called decimated framelets, which form a localized tight frame on the graph. The decimated framelet system allows storage of the graph data representation on a coarse-grained chain and processes the graph data at multi scales where at each scale, the data is stored at a subgraph. Based on this, we then establish decimated G-framelet transforms for the decomposition and reconstruction of the graph data at multi resolutions via a constructive data-driven filter bank. The graph framelets are built on a chain-based orthonormal basis that supports fast graph Fourier transforms. From this, we give a fast algorithm for the decimated G-framelet transforms, or FGT, that has linear computational complexity O(N) for a graph of size N. The theory of decimated framelets and FGT is verified with numerical examples for random graphs. The effectiveness is demonstrated by real-world applications, including multiresolution analysis for traffic network, and graph neural networks for graph classification tasks.
168 - Ce Ju 2020
The purpose of this paper is to write a complete survey of the (spectral) manifold learning methods and nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR methods in history were respectively published in Science in 2000 in which they solve the similar reduction problem of high-dimensional data endowed with the intrinsic nonlinear structure. The intrinsic nonlinear structure is always interpreted as a concept in manifolds from geometry and topology in theoretical mathematics by computer scientists and theoretical physicists. In 2001, the concept of Manifold Learning first appears as an NLDR method called Laplacian Eigenmaps purposed by Belkin and Niyogi. In the typical manifold learning setup, the data set, also called the observation set, is distributed on or near a low dimensional manifold $M$ embedded in $mathbb{R}^D$, which yields that each observation has a $D$-dimensional representation. The goal of (spectral) manifold learning is to reduce these observations as a compact lower-dimensional representation based on the geometric information. The reduction procedure is called the (spectral) manifold learning method. In this paper, we derive each (spectral) manifold learning method with the matrix and operator representation, and we then discuss the convergence behavior of each method in a geometric uniform language. Hence, we name the survey Geometric Foundations of Data Reduction.
Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing scalable AMR methods make heuristic refinement decisions based on instantaneous error estimation and thus do not aim for long-term optimality over an entire simulation. We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning (RL) to train refinement policies directly from simulation. AMR poses a new problem for RL in that both the state dimension and available action set changes at every step, which we solve by proposing new policy architectures with differing generality and inductive bias. The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations. We demonstrate in comprehensive experiments on static function estimation and the advection of different fields that RL policies can be competitive with a widely-used error estimator and generalize to larger, more complex, and unseen test problems.
186 - Francis Bach 2020
Richardson extrapolation is a classical technique from numerical analysis that can improve the approximation error of an estimation method by combining linearly several estimates obtained from different values of one of its hyperparameters, without t he need to know in details the inner structure of the original estimation method. The main goal of this paper is to study when Richardson extrapolation can be used within machine learning, beyond the existing applications to step-size adaptations in stochastic gradient descent. We identify two situations where Richardson interpolation can be useful: (1) when the hyperparameter is the number of iterations of an existing iterative optimization algorithm, with applications to averaged gradient descent and Frank-Wolfe algorithms (where we obtain asymptotically rates of $O(1/k^2)$ on polytopes, where $k$ is the number of iterations), and (2) when it is a regularization parameter, with applications to Nesterov smoothing techniques for minimizing non-smooth functions (where we obtain asymptotically rates close to $O(1/k^2)$ for non-smooth functions), and ridge regression. In all these cases, we show that extrapolation techniques come with no significant loss in performance, but with sometimes strong gains, and we provide theoretical justifications based on asymptotic developments for such gains, as well as empirical illustrations on classical problems from machine learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا