ﻻ يوجد ملخص باللغة العربية
In this paper we consider the inverse electromagnetic scattering for a cavity surrounded by an inhomogeneous medium in three dimensions. The measurements are scattered wave fields measured on some surface inside the cavity, where such scattered wave fields are due to sources emitted on the same surface. We first prove that the measurements uniquely determine the shape of the cavity, where we make use of a boundary value problem called the exterior transmission problem. We then complete the inverse scattering problem by designing the linear sampling method to reconstruct the cavity. Numerical examples are further provided to illustrate the viability of our algorithm.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotr
The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to th
Whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D axisymmetric inc
We introduce two data completion algorithms for the limited-aperture problems in inverse acoustic scattering. Both completion algorithms are independent of the topological and physical properties of the unknown scatterers. The main idea is to relate