ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential singularity of the 3D Euler equations in the interior domain

78   0   0.0 ( 0 )
 نشر من قبل Thomas Hou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Thomas Y. Hou




اسأل ChatGPT حول البحث

Whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D axisymmetric incompressible Euler equations with smooth initial data of finite energy develop a potential finite time singularity at the origin. This potential singularity is different from the blowup scenario revealed by Luo-Hou in cite{luo2014potentially,luo2014toward}, which occurs on the boundary. Our initial condition has a simple form and shares several attractive features of a more sophisticated initial condition constructed by Hou-Huang in cite{Hou-Huang-2021}. One important difference between these two blowup scenarios is that the solution for our initial data has a one-scale structure instead of a two-scale structure reported in cite{Hou-Huang-2021}. More importantly, the solution seems to develop nearly self-similar scaling properties that are compatible with those of the 3D Navier--Stokes equations. We will present strong numerical evidence that the 3D Euler equations seem to develop a potential finite time singularity. Moreover, the nearly self-similar profile seems to be very stable to the small perturbation of the initial data. Finally, we present some preliminary results to demonstrate that the 3D Navier--Stokes equations using the same initial condition develop nearly singular behavior with maximum vorticity increased by a factor of $10^{7}$.

قيم البحث

اقرأ أيضاً

75 - Thomas Y. Hou , De Huang 2021
In this paper, we present strong numerical evidences that the $3$D incompressible axisymmetric Navier-Stokes equations with degenerate diffusion coefficients and smooth initial data of finite energy develop a potential finite time locally self-simila r singularity at the origin. The spatial part of the degenerate diffusion coefficient is a smooth function of $r$ and $z$ independent of the solution and vanishes like $O(r^2)+O(z^2)$ near the origin. This potential singularity is induced by a potential singularity of the $3$D Euler equations. An important feature of this potential singularity is that the solution develops a two-scale traveling wave that travels towards the origin. The two-scale feature is characterized by the property that the center of the traveling wave approaches the origin at a slower rate than the rate of the collapse of the singularity. The driving mechanism for this potential singularity is due to two antisymmetric vortex dipoles that generate a strong shearing layer in both the radial and axial velocity fields. Without the viscous regularization, the $3$D Euler equations develop an additional small scale characterizing the thickness of the sharp front. On the other hand, the Navier-Stokes equations with a constant diffusion coefficient regularize the two-scale solution structure and do not develop a finite time singularity for the same initial data. The initial condition is designed in such a way that it generates a positive feedback loop that enforces a strong nonlinear alignment of vortex stretching, leading to a stable locally self-similar blowup at the origin. We perform careful resolution study and asymptotic scaling analysis to provide further support of the potential finite time locally self-similar blowup.
84 - Fang Zeng , Shixu Meng 2020
In this paper we consider the inverse electromagnetic scattering for a cavity surrounded by an inhomogeneous medium in three dimensions. The measurements are scattered wave fields measured on some surface inside the cavity, where such scattered wave fields are due to sources emitted on the same surface. We first prove that the measurements uniquely determine the shape of the cavity, where we make use of a boundary value problem called the exterior transmission problem. We then complete the inverse scattering problem by designing the linear sampling method to reconstruct the cavity. Numerical examples are further provided to illustrate the viability of our algorithm.
While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Eul er equations in $mathbb{R}^3$ with a fixed speed of rotation. We show that for any $M>0$, axisymmetric initial data of sufficiently small size $varepsilon$ lead to solutions that exist for a long time at least $varepsilon^{-M}$ and disperse. This is a manifestation of the stabilizing effect of rotation, regardless of its speed. To achieve this we develop an anisotropic framework that naturally builds on the available symmetries. This allows for a precise quantification and control of the geometry of nonlinear interactions, while at the same time giving enough information to obtain dispersive decay via adapted linear dispersive estimates.
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with the entropy analysis. The details brought forward by the nonlinear energy analysis allow us to pinpoint where the difference between the linear and nonlinear analysis originate. We find that the result from the linear analysis does not necessarily hold in the nonlinear case. The nonlinear analysis leads in general to a different minimal number of boundary conditions compared with the linear analysis. In particular, and contrary to the linear case, the magnitude of the flow does not influence the number of required boundary conditions.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor dinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Greens function for the Maxwell equations in the free space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا