ﻻ يوجد ملخص باللغة العربية
Floorplans are commonly used to represent the layout of buildings. In computer aided-design (CAD) floorplans are usually represented in the form of hierarchical graph structures. Research works towards computational techniques that facilitate the design process, such as automated analysis and optimization, often use simple floorplan representations that ignore the semantics of the space and do not take into account usage related analytics. We present a floorplan embedding technique that uses an attributed graph to represent the geometric information as well as design semantics and behavioral features of the inhabitants as node and edge attributes. A Long Short-Term Memory (LSTM) Variational Autoencoder (VAE) architecture is proposed and trained to embed attributed graphs as vectors in a continuous space. A user study is conducted to evaluate the coupling of similar floorplans retrieved from the embedding space with respect to a given input (e.g., design layout). The qualitative, quantitative and user-study evaluations show that our embedding framework produces meaningful and accurate vector representations for floorplans. In addition, our proposed model is a generative model. We studied and showcased its effectiveness for generating new floorplans. We also release the dataset that we have constructed and which, for each floorplan, includes the design semantics attributes as well as simulation generated human behavioral features for further study in the community.
Deep learning based computer vision fails to work when labeled images are scarce. Recently, Meta learning algorithm has been confirmed as a promising way to improve the ability of learning from few images for computer vision. However, previous Meta l
Unsupervised representation learning has recently received lots of interest due to its powerful generalizability through effectively leveraging large-scale unlabeled data. There are two prevalent approaches for this, contrastive learning and generati
Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the represent
By planning through a learned dynamics model, model-based reinforcement learning (MBRL) offers the prospect of good performance with little environment interaction. However, it is common in practice for the learned model to be inaccurate, impairing p
Recent findings in neuroscience suggest that the human brain represents information in a geometric structure (for instance, through conceptual spaces). In order to communicate, we flatten the complex representation of entities and their attributes in