ﻻ يوجد ملخص باللغة العربية
Deep learning based computer vision fails to work when labeled images are scarce. Recently, Meta learning algorithm has been confirmed as a promising way to improve the ability of learning from few images for computer vision. However, previous Meta learning approaches expose problems: 1) they ignored the importance of attention mechanism for the Meta learner; 2) they didnt give the Meta learner the ability of well using the past knowledge which can help to express images into high representations, resulting in that the Meta learner has to solve few shot learning task directly from the original high dimensional RGB images. In this paper, we argue that the attention mechanism and the past knowledge are crucial for the Meta learner, and the Meta learner should be trained on high representations of the RGB images instead of directly on the original ones. Based on these arguments, we propose two methods: Attention augmented Meta Learning (AML) and Representation based and Attention augmented Meta Learning(RAML). The method AML aims to improve the Meta learners attention ability by explicitly embedding an attention model into its network. The method RAML aims to give the Meta learner the ability of leveraging the past learned knowledge to reduce the dimension of the original input data by expressing it into high representations, and help the Meta learner to perform well. Extensive experiments demonstrate the effectiveness of the proposed models, with state-of-the-art few shot learning performances on several few shot learning benchmarks. The source code of our proposed methods will be released soon to facilitate further studies on those aforementioned problem.
Floorplans are commonly used to represent the layout of buildings. In computer aided-design (CAD) floorplans are usually represented in the form of hierarchical graph structures. Research works towards computational techniques that facilitate the des
Meta-learning for offline reinforcement learning (OMRL) is an understudied problem with tremendous potential impact by enabling RL algorithms in many real-world applications. A popular solution to the problem is to infer task identity as augmented st
By planning through a learned dynamics model, model-based reinforcement learning (MBRL) offers the prospect of good performance with little environment interaction. However, it is common in practice for the learned model to be inaccurate, impairing p
Deep neural networks have been shown as a class of useful tools for addressing signal recognition issues in recent years, especially for identifying the nonlinear feature structures of signals. However, this power of most deep learning techniques hea
We build a theoretical framework for designing and understanding practical meta-learning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction alg