ﻻ يوجد ملخص باللغة العربية
Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies. Smartphones are nowadays ubiquitous sensor devices with high computational power, moderate cost, and high-quality sensors. A smartphone app, called PocketLAI, was recently presented and tested for acquiring ground LAI estimates. In this letter, we explore the use of state-of-the-art nonlinear Gaussian process regression (GPR) to derive spatially explicit LAI estimates over rice using ground data from PocketLAI and Landsat 8 imagery. GPR has gained popularity in recent years because of their solid Bayesian foundations that offers not only high accuracy but also confidence intervals for the retrievals. We show the first LAI maps obtained with ground data from a smartphone combined with advanced machine learning. This work compares LAI predictions and confidence intervals of the retrievals obtained with PocketLAI to those obtained with classical instruments, such as digital hemispheric photography (DHP) and LI-COR LAI-2000. This letter shows that all three instruments got comparable result but the PocketLAI is far cheaper. The proposed methodology hence opens a wide range of possible applications at moderate cost.
Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and sat
We consider the problem of optimizing a vector-valued objective function $boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({cal X},d)$ of designs. We assume that $boldsymbol{f}$ is not know
Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding result
In indoor positioning, signal fluctuation is highly location-dependent. However, signal uncertainty is one critical yet commonly overlooked dimension of the radio signal to be fingerprinted. This paper reviews the commonly used Gaussian Processes (GP
Linear models are regularly used for mapping cores to tiles in a chip. System-on-Chip (SoC) design requires integration of functional units with varying sizes, but conventional models only account for identical-sized cores. Linear models cannot calcu