ﻻ يوجد ملخص باللغة العربية
We provide strong evidence that the asymptotically free (1+1)-dimensional non-linear O(3) sigma model can be regularized using a quantum lattice Hamiltonian, referred to as the Heisenberg-comb, that acts on a Hilbert space with only two qubits per spatial lattice site. The Heisenberg-comb consists of a spin-half anti-ferromagnetic Heisenberg-chain coupled anti-ferromagnetically to a second local spin-half particle at every lattice site. Using a world-line Monte Carlo method we show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units and argue how the continuum limit could emerge. We provide a quantum circuit description of time-evolution of the model and argue that near-term quantum computers may suffice to demonstrate asymptotic freedom.
We investigate many-body properties of equally populated three-component fermions with attractive three-body contact interaction. A diagrammatic approach suggests the possible occurrence of Cooper triples at low temperature, which are a three-body co
Measurements which probe the energy dependence of $alpha_s$, the coupling strength of the strong interaction, are reviewed. Jet counting in $e^+ e^-$ annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, prov
We study four-dimensional gauge theories coupled to fermions in the fundamental and meson-like scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the regime where asymptotic freedom is absent, we
We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especi
Lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, $T_c$, i.e. charm degrees of freedom carrying fractional bar