ﻻ يوجد ملخص باللغة العربية
We study four-dimensional gauge theories coupled to fermions in the fundamental and meson-like scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the regime where asymptotic freedom is absent, we determine all interacting fixed points using perturbation theory up to three loop in the gauge and two loop in the Yukawa and quartic couplings. We find that the conformal window of ultraviolet fixed points is narrowed-down by finite-$N$ corrections beyond the Veneziano limit. We also find a new infrared fixed point whose main features such as scaling exponents, UV-IR connecting trajectories, and phase diagram are provided. Both fixed points collide upon varying the number of fermion flavours $N_{rm f}$, and conformality is lost through a saddle-node bifurcation. We further revisit the prospect for ultraviolet fixed points in the large $N_{rm f}$ limit where matter field fluctuations dominate. Unlike at weak coupling, we do not find clear evidence for new scaling solutions even in the presence of scalar and Yukawa couplings.
${Z}_2$-Yukawa-QCD models are a minimalistic model class with a Yukawa and a QCD-like gauge sector that exhibits a regime with asymptotic freedom in all its marginal couplings in standard perturbation theory. We discover the existence of further asym
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic po
We provide strong evidence that the asymptotically free (1+1)-dimensional non-linear O(3) sigma model can be regularized using a quantum lattice Hamiltonian, referred to as the Heisenberg-comb, that acts on a Hilbert space with only two qubits per sp
Measurements which probe the energy dependence of $alpha_s$, the coupling strength of the strong interaction, are reviewed. Jet counting in $e^+ e^-$ annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, prov
Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for $mathcal{N}=1$ supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative $R$-charges.