ترغب بنشر مسار تعليمي؟ اضغط هنا

Charm Degrees of Freedom in Quark Gluon Plasma

96   0   0.0 ( 0 )
 نشر من قبل Sayantan Sharma
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, $T_c$, i.e. charm degrees of freedom carrying fractional baryonic charge start to appear. By reexamining those same lattice QCD data we show that, in addition to the contributions from quark-like excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm meson and baryon-like excitations associated with integral baryonic charges for temperatures up to $1.2~ T_c$. Charm quark-quasiparticles become the dominant degrees of freedom for temperatures $T>1.2~ T_c$.

قيم البحث

اقرأ أيضاً

We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the Pythia event generator tuned to fit the transverse momentum spectr um and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM) which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross section are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation depending on transverse momentum. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. Finally, the nuclear modification factor $rm R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{rm NN}}$ =200 GeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $rm R_{AA}$ versus $p_T$ reflects the heavy quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $rm R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
We study the electromagnetic (e.m.) conductivity of QGP in a magnetic background by lattice simulations with $N_f = 2+1$ dynamical rooted staggered fermions at the physical point. We study the correlation functions of the e.m.~currents at $T=200,,250 $,MeV and use the Tikhonov approach to extract the conductivity. This is found to rise with the magnetic field in the direction parallel to it and to decrease in the transverse direction, giving evidence for both the Chiral Magnetic Effect and the magnetoresistance phenomenon in QGP. We also estimate the chiral charge relaxation time in QGP.
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu ch exceeding typical values of the fields in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter $hat q$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $hat q$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy ion collisions. The parameter $hat q$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $hat q$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Consequences of our findings for the phenomenology of jet quenching in relativistic heavy ion collisions are briefly discussed.
78 - Edward Shuryak 2008
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan ding of gauge-string duality known as AdS/CFT and its application for conformal plasma. In view of interdisciplinary nature of the subject, we include brief introduction into several topics for pedestrians. Some fundamental questions addressed are: Why is sQGP such a good liquid? What is the nature of (de)confinement and what do we know about magnetic objects creating it? Do they play any important role in sQGP physics? Can we understand the AdS/CFT predictions, from the gauge theory side? Can they be tested experimentally? Can AdS/CFT duality help us understand rapid equilibration/entropy production? Can we work out a complete dynamical gravity dual to heavy ion collisions?
We extract the heavy-quark diffusion coefficient kappa and the resulting momentum broadening <p^2> in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth of <p^2>, followed by linear growth with time due to Langevin-type dynamics and damped oscillations around this growth at the plasmon frequency. We show that these novel oscillations are not easily explained using perturbative techniques but result from an excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We argue that the kinetic theory description of such systems becomes less reliable in the presence of this IR enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا