ﻻ يوجد ملخص باللغة العربية
To increase the transmission distance of Wireless Power Transfer (WPT) systems, we provide guidelines on choosing the optimal location of an Intermediate Coil with respect to size within a standard five-coil axially aligned experimental setup. From our results, for maximum magnitude of S21 at the resonant frequency we found the optimal location to exist where the coupling coefficient between the Transmitter and the Intermediate Coil and the coupling coefficient between the Receiver and the Intermediate Coil are identical. Additionally, the optimal outer diameter for the maximum magnitude of S21 at the resonant frequency of the Intermediate Coil in the given symmetric and asymmetric setup are found to be larger than both TX and RX.
Wireless charging for a moving electronic device such as smartphone is extremely difficult. Owing to energy dissipation during wireless transmission, sophisticated tracking control is typically required for simultaneously efficient and remote energy
In this paper, we design and experiment a far-field wireless power transfer (WPT) architecture based on distributed antennas, so-called WPT DAS, that dynamically selects transmit antenna and frequency to increase the output dc power. Uniquely, spatia
Inductively coupled resonant circuits are affected by the so-called frequency splitting phenomenon at short distances. In the area of power electronics, tracking of one of the peak frequencies is state-of-the-art. In the data transmission community,
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-o
Free positioning of receivers is one of the key requirements for many wireless power transfer (WPT) applications, required from the end-user point of view. However, realization of stable and effective wireless power transfer for freely positioned rec