ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobile Wireless Power Transfer Using A Self-Aligned Resonant Beam

82   0   0.0 ( 0 )
 نشر من قبل Mingqing Liu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless charging for a moving electronic device such as smartphone is extremely difficult. Owing to energy dissipation during wireless transmission, sophisticated tracking control is typically required for simultaneously efficient and remote energy transfer in mobile scenarios. However, reaching the necessary tracking accuracy and reliability is very hard or even impossible. Here, inspired by the structures of optical resonator and retroreflector, we develop a self-aligned light beam system for mobile energy transfer with simultaneous high efficiency and long distance by exploring radiative resonances inside a double-retroreflector cavity. This system eliminates the requirement for any tracking control. To reduce transmission loss in mobile scenarios, we combine the advantages of energy-concentration using an optical resonant beam and self-alignment using a double-retroreflector cavity. We demonstrate above 5-watt optical power transfer with nearly 100% efficiency to a few-centimeter-size receiver for charging a smartphone, which is moving arbitrarily in the range of 2-meter distance and 6-degree field of view from the transmitter. This charging system empowers a smartphone in mobile operation with unlimited battery life, where cable charging is no longer needed. We validate the simultaneous high efficiency and long distance of the mobile energy transfer system through theoretical analyses and systematic experiments.

قيم البحث

اقرأ أيضاً

114 - Wen Fang , Hao Deng , Qingwen Liu 2021
Integrating the wireless power transfer (WPT) technology into the wireless communication system has been important for operational cost saving and power-hungry problem solving of electronic devices. In this paper, we propose a resonant beam simultane ous wireless information and power transfer (RB-SWIPT) system, which utilizes a gain medium and two retro-reflecting surfaces to enhance and retro-reflect energy, and allows devices to recharge their batteries and exchange information from the resonant beam wirelessly. To reveal the SWIPT mechanism and evaluate the SWIPT performance, we establish an analytical end-to-end (E2E) transmission model based on a modular approach and the electromagnetic field propagation. Then, the intra-cavity power intensity distribution, transmission loss, output power, and E2E efficiency can be obtained. The numerical evaluation illustrates that the exemplary RB-SWIPT system can provide about 4.20W electric power and 12.41bps/Hz spectral efficiency, and shorter transmission distance or larger retro-reflecting surface size can lead to higher E2E efficiency. The RB-SWIPT presents a new way for high-power, long-range WPT, and high-rate communication.
Radiating wireless power transfer (WPT) brings forth the possibility to cost-efficiently charge wireless devices without requiring a wiring infrastructure. As such, it is expected to play a key role in the deployment of limited-battery communicating devices, as part of the 6G enabled Internet-of-Everything (IoE) vision. To date, radiating WPT technologies are mainly studied and designed assuming that the devices are located in the far-field region of the power radiating antenna, resulting in a relatively low energy transfer efficiency. However, with the transition of 6G systems to mmWave frequencies combined with the usage of large-scale antennas, future WPT devices are likely to operate in the radiating near-field (Fresnel) region. In this article, we provide an overview of the opportunities and challenges which arise from radiating near-field WPT. In particular, we discuss about the possibility to realize beam focusing in near-field radiating conditions, and highlight its possible implications for WPT in future {IoE} networks. Besides, we overview some of the design challenges and research directions which arise from this emerging paradigm, including its simultaneous operation with wireless communications, radiating waveform considerations, hardware aspects, and operation with typical antenna architectures.
To increase the transmission distance of Wireless Power Transfer (WPT) systems, we provide guidelines on choosing the optimal location of an Intermediate Coil with respect to size within a standard five-coil axially aligned experimental setup. From o ur results, for maximum magnitude of S21 at the resonant frequency we found the optimal location to exist where the coupling coefficient between the Transmitter and the Intermediate Coil and the coupling coefficient between the Receiver and the Intermediate Coil are identical. Additionally, the optimal outer diameter for the maximum magnitude of S21 at the resonant frequency of the Intermediate Coil in the given symmetric and asymmetric setup are found to be larger than both TX and RX.
69 - Peter A. Hoeher 2019
Inductively coupled resonant circuits are affected by the so-called frequency splitting phenomenon at short distances. In the area of power electronics, tracking of one of the peak frequencies is state-of-the-art. In the data transmission community, however, the frequency splitting effect is often ignored. Particularly, modulation schemes have not yet been adapted to the bifurcation phenomenon. We argue that binary frequency shift keying (2-ary FSK) is a low-cost modulation scheme which well matches the double-peak voltage transfer function $H(s)$, particularly when the quality factor $Q$ is large, whereas most other modulation schemes suffer from the small bandwidths of the peaks. Additionally we show that a rectified version of 2-ary FSK, coined rectified FSK (RFSK), is even more attractive from output power and implementation points of view. Analytical and numerical contributions include the efficiency factor, the impulse response, and the bit error performance. A low-cost incoherent receiver is proposed. Theoretical examinations are supported by an experimental prototype.
In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the rec eiver in order to boost the energy harvesting (EH) performance. By taking into account the nonlinearities of the EH process, we derive closed-form analytical expressions for the peak-to-average-power-ratio of the received signal as well as the harvested power. Nontrivial design insights are provided, where it is shown how the parameters of the transmitted waveform affects the EH performance. Furthermore, it is demonstrated that the employment of a correlator at the receiver achieves significant EH gains in DCSK-based WPT systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا