ﻻ يوجد ملخص باللغة العربية
Free positioning of receivers is one of the key requirements for many wireless power transfer (WPT) applications, required from the end-user point of view. However, realization of stable and effective wireless power transfer for freely positioned receivers is technically challenging task because of the requirement of complex control and tuning. In this paper, we propose a concept of automatic receiver tracking and power channeling for multi-transmitter WPT systems using uncoupled transmitter and uncoupled repeaters. Each transmitter-repeater pair forms an independent power transfer channel providing an effective link for the power flow from the transmitter to the receiver. The proposed WPT system is capable of maintaining stable output power with constant high efficiency regardless of the receiver position and without having any active control or tuning. The proposed concept is numerically and experimentally verified by using a four-transmitter WPT system in form of a linear array. The experimental results show that the efficiency of the proposed WPT system can reach 94.5% with a variation less than 2% against the receiver position.
We present an omnidirectional wireless power transfer (WPT) system capable of automatic power flow control using three orthogonal transmitter (Tx)-repeater (Rp) pairs. The power drawn from each transmitter is automatically adjusted depending on the m
Powering mobiles using microwave emph{power transfer} (PT) avoids the inconvenience of battery recharging by cables and ensures uninterrupted mobile operation. The integration of PT and emph{information transfer} (IT) allows wireless PT to be realize
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-o
Simultaneous wireless information and power transfer (SWIPT) is an appealing research area because both information and energy can be delivered to wireless devices simultaneously. In this paper, we propose a diplexer-based receiver architecture that
In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the rec