ﻻ يوجد ملخص باللغة العربية
Behavior cloning (BC) is often practical for robot learning because it allows a policy to be trained offline without rewards, by supervised learning on expert demonstrations. However, BC does not effectively leverage what we will refer to as unlabeled experience: data of mixed and unknown quality without reward annotations. This unlabeled data can be generated by a variety of sources such as human teleoperation, scripted policies and other agents on the same robot. Towards data-driven offline robot learning that can use this unlabeled experience, we introduce Offline Reinforced Imitation Learning (ORIL). ORIL first learns a reward function by contrasting observations from demonstrator and unlabeled trajectories, then annotates all data with the learned reward, and finally trains an agent via offline reinforcement learning. Across a diverse set of continuous control and simulated robotic manipulation tasks, we show that ORIL consistently outperforms comparable BC agents by effectively leveraging unlabeled experience.
Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect a
Offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions. Offline RL enables extensive use and re-use of historical datasets, while also alleviating safety concerns associated wi
In offline reinforcement learning (RL) agents are trained using a logged dataset. It appears to be the most natural route to attack real-life applications because in domains such as healthcare and robotics interactions with the environment are either
Learning robotic manipulation through reinforcement learning (RL) using only sparse reward signals is still considered a largely unsolved problem. Leveraging human demonstrations can make the learning process more sample efficient, but obtaining high