ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning for Robotic Manipulation using Simulated Locomotion Demonstrations

192   0   0.0 ( 0 )
 نشر من قبل Ozsel Kilinc
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning robotic manipulation through reinforcement learning (RL) using only sparse reward signals is still considered a largely unsolved problem. Leveraging human demonstrations can make the learning process more sample efficient, but obtaining high-quality demonstrations can be costly or unfeasible. In this paper we propose a novel approach that introduces object-level demonstrations, i.e. examples of where the objects should be at any state. These demonstrations are generated automatically through RL hence require no expert knowledge. We observe that, during a manipulation task, an object is moved from an initial to a final position. When seen from the point of view of the object being manipulated, this induces a locomotion task that can be decoupled from the manipulation task and learnt through a physically-realistic simulator. The resulting object-level trajectories, called simulated locomotion demonstrations (SLDs), are then leveraged to define auxiliary rewards that are used to learn the manipulation policy. The proposed approach has been evaluated on 13 tasks of increasing complexity, and has been demonstrated to achieve higher success rate and faster learning rates compared to alternative algorithms. SLDs are especially beneficial for tasks like multi-object stacking and non-rigid object manipulation.


قيم البحث

اقرأ أيضاً

Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained using soft Q-learning can be applied to real-world robotic manipulation. The application of this method to real-world manipulation is facilitated by two important features of soft Q-learning. First, soft Q-learning can learn multimodal exploration strategies by learning policies represented by expressive energy-based models. Second, we show that policies learned with soft Q-learning can be composed to create new policies, and that the optimality of the resulting policy can be bounded in terms of the divergence between the composed policies. This compositionality provides an especially valuable tool for real-world manipulation, where constructing new policies by composing existing skills can provide a large gain in efficiency over training from scratch. Our experimental evaluation demonstrates that soft Q-learning is substantially more sample efficient than prior model-free deep reinforcement learning methods, and that compositionality can be performed for both simulated and real-world tasks.
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect a nd sufficient, which yet is unrealistic to meet in practice. To work on imperfect demonstrations, we first define an imperfect expert setting for RLfD in a formal way, and then point out that previous methods suffer from two issues in terms of optimality and convergence, respectively. Upon the theoretical findings we have derived, we tackle these two issues by regarding the expert guidance as a soft constraint on regulating the policy exploration of the agent, which eventually leads to a constrained optimization problem. We further demonstrate that such problem is able to be addressed efficiently by performing a local linear search on its dual form. Considerable empirical evaluations on a comprehensive collection of benchmarks indicate our method attains consistent improvement over other RLfD counterparts.
In this paper, we study the problem of learning vision-based dynamic manipulation skills using a scalable reinforcement learning approach. We study this problem in the context of grasping, a longstanding challenge in robotic manipulation. In contrast to static learning behaviors that choose a grasp point and then execute the desired grasp, our method enables closed-loop vision-based control, whereby the robot continuously updates its grasp strategy based on the most recent observations to optimize long-horizon grasp success. To that end, we introduce QT-Opt, a scalable self-supervised vision-based reinforcement learning framework that can leverage over 580k real-world grasp attempts to train a deep neural network Q-function with over 1.2M parameters to perform closed-loop, real-world grasping that generalizes to 96% grasp success on unseen objects. Aside from attaining a very high success rate, our method exhibits behaviors that are quite distinct from more standard grasping systems: using only RGB vision-based perception from an over-the-shoulder camera, our method automatically learns regrasping strategies, probes objects to find the most effective grasps, learns to reposition objects and perform other non-prehensile pre-grasp manipulations, and responds dynamically to disturbances and perturbations.
Behavior cloning (BC) is often practical for robot learning because it allows a policy to be trained offline without rewards, by supervised learning on expert demonstrations. However, BC does not effectively leverage what we will refer to as unlabele d experience: data of mixed and unknown quality without reward annotations. This unlabeled data can be generated by a variety of sources such as human teleoperation, scripted policies and other agents on the same robot. Towards data-driven offline robot learning that can use this unlabeled experience, we introduce Offline Reinforced Imitation Learning (ORIL). ORIL first learns a reward function by contrasting observations from demonstrator and unlabeled trajectories, then annotates all data with the learned reward, and finally trains an agent via offline reinforcement learning. Across a diverse set of continuous control and simulated robotic manipulation tasks, we show that ORIL consistently outperforms comparable BC agents by effectively leveraging unlabeled experience.
Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real -world scenarios. On the other hand, imitation learning (IL) learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations. In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive, and the quality of demonstrations typically limits the performance of the learning policy. In this work, we propose Self-Adaptive Imitation Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations for highly challenging sparse reward tasks. SAIL bridges the advantages of IL and RL to reduce the sample complexity substantially, by effectively exploiting sup-optimal demonstrations and efficiently exploring the environment to surpass the demonstrated performance. Extensive empirical results show that not only does SAIL significantly improve the sample-efficiency but also leads to much better final performance across different continuous control tasks, comparing to the state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا