ﻻ يوجد ملخص باللغة العربية
The inverse scattering transform is extended to investigate the Tzitz{e}ica equation. A set of sectionally analytic eigenfunctions and auxiliary eigenfunctions are introduced. We note that in this procedure, the auxiliary eigenfunctions play an important role. Besides, the symmetries of the analytic eigenfunctions and scattering data are discussed. The asymptotic behaviors of the Jost eigenfunctions are derived systematically. A Riemann-Hilbert problem is constructed to study the inverse scattering problem. Lastly, some novel exact solutions are obtained for reflectionless potentials.
As in the case of soliton PDEs in 2+1 dimensions, the evolutionary form of integrable dispersionless multidimensional PDEs is non-local, and the proper choice of integration constants should be the one dictated by the associated Inverse Scattering Tr
The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete so
In this work, a generalized nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation is introduced, and its integrability as an infinite dimensional Hamilton dynamic system is established. Motivated by the ideas of Ablowitz and Musslimani (2016 Nonlineari
The inverse scattering transform for the focusing nonlinear Schrodinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be