ﻻ يوجد ملخص باللغة العربية
The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete soliton solutions, Backlund transformations and an associated linear problem, called a Lax pair, for which it provides the compatibility condition. In this paper, we solve the initial value problem for the LKdV equation through a discrete implementation of the inverse scattering transform method applied to the Lax pair. The initial value used for the LKdV equation is assumed to be real and decaying to zero as the absolute value of the discrete spatial variable approaches large values. An interesting feature of our approach is the solution of a discrete Gelfand-Levitan equation. Moreover, we provide a complete characterization of reflectionless potentials and show that this leads to the Cauchy matrix form of N-soliton solutions.
The inverse scattering transform is extended to investigate the Tzitz{e}ica equation. A set of sectionally analytic eigenfunctions and auxiliary eigenfunctions are introduced. We note that in this procedure, the auxiliary eigenfunctions play an impor
As in the case of soliton PDEs in 2+1 dimensions, the evolutionary form of integrable dispersionless multidimensional PDEs is non-local, and the proper choice of integration constants should be the one dictated by the associated Inverse Scattering Tr
In this work, a generalized nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation is introduced, and its integrability as an infinite dimensional Hamilton dynamic system is established. Motivated by the ideas of Ablowitz and Musslimani (2016 Nonlineari
The inverse scattering transform for the focusing nonlinear Schrodinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the
We develop the inverse scattering transform for the KdV equation with real singular initial data $q(x)$ of the form $q(x) = r(x) + r(x)^2$, where $rin L^2_{textrm{loc}}$ and $r=0$ on $mathbb R_+$. As a consequence we show that the solution $q(x,t)$ i