ﻻ يوجد ملخص باللغة العربية
Heavily oxygen deficient NdNiO$_3$ (NNO) films, which are insulating due to electron localization, contain pristine regions that undergo a hidden metal-insulator transition. Increasing oxygen content increases the connectivity of the metallic regions and the metal-insulator transition is first revealed, upon reaching the percolation threshold, by the presence of hysteresis. Only upon further oxygenation is the global metallic state (with a change in the resistivity slope) eventually achieved. It is shown that sufficient oxygenation leads to linear temperature dependence of resistivity in the metallic state, with a scattering rate directly proportional to temperature. Despite the known difficulties to establish the proportionality constant, the experiments are consistent with a relationship 1/$tau$= $alpha k_B T/hbar$, with $alpha$ not far from unity. These results could provide experimental support for recent theoretical predictions of disorder in a two-fluid model as a possible origin of Planckian dissipation.
The control of materials properties with light is a promising approach towards the realization of faster and smaller electronic devices. With phases that can be controlled via strain, pressure, chemical composition or dimensionality, nickelates are g
We review the appearance of the Planckian time $tau_text{Pl} = hbar/(k_B T)$ in both conventional and unconventional metals. We give a pedagogical discussion of the various different timescales (quasiparticle, transport, many-body) that characterize
Experimental evidence for the possible universality classes of the metal-insulator transition (MIT) in two dimensions (2D) is discussed. Sufficiently strong disorder, in particular, changes the nature of the transition. Comprehensive studies of the c
A correlated material in the vicinity of an insulator-metal transition (IMT) exhibits rich phenomenology and variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorde
Metal to insulator transitions (MITs) driven by strong electronic correlations are common in condensed matter systems, and are associated with some of the most remarkable collective phenomena in solids, including superconductivity and magnetism. Tuni