ﻻ يوجد ملخص باللغة العربية
The control of materials properties with light is a promising approach towards the realization of faster and smaller electronic devices. With phases that can be controlled via strain, pressure, chemical composition or dimensionality, nickelates are good candidates for the development of a new generation of high performance and low consumption devices. Here we analyze the photoinduced dynamics in a single crystalline NdNiO$_3$ film upon excitation across the electronic gap. Using time-resolved reflectivity and resonant x-ray diffraction, we show that the pump pulse induces an insulator-to-metal transition, accompanied by the melting of the charge order. Finally we compare our results to similar studies in manganites and show that the same model can be used to describe the dynamics in nickelates, hinting towards a unified description of these photoinduced phase transitions.
Heavily oxygen deficient NdNiO$_3$ (NNO) films, which are insulating due to electron localization, contain pristine regions that undergo a hidden metal-insulator transition. Increasing oxygen content increases the connectivity of the metallic regions
We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types
Transition metal oxides possess complex free energy surfaces with competing degrees of freedom. Photoexcitation allows shaping of such rich energy landscapes. In epitaxially strained $mathrm{La_{0.67}Ca_{0.33}MnO_3}$, optical excitation with a sub-10
The insulator-to-metal transition (IMT) of the simple binary compound of vanadium dioxide VO$_2$ at $sim 340$ K has been puzzling since its discovery more than five decades ago. A wide variety of photon and electron probes have been applied in search
Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transie