ﻻ يوجد ملخص باللغة العربية
Gauge theories are of paramount importance in our understanding of fundamental constituents of matter and their interactions. However, the complete characterization of their phase diagrams and the full understanding of non-perturbative effects are still debated, especially at finite charge density, mostly due to the sign-problem affecting Monte Carlo numerical simulations. Here, we report the Tensor Network simulation of a three dimensional lattice gauge theory in the Hamiltonian formulation including dynamical matter: Using this sign-problem-free method, we simulate the ground states of a compact Quantum Electrodynamics at zero and finite charge densities, and address fundamental questions such as the characterization of collective phases of the model, the presence of a confining phase at large gauge coupling, and the study of charge-screening effects.
We study different aspects of quantum field theory at finite density using methods from quantum information theory. For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions. Using the
To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem
We study 2d U(1) gauge Higgs systems with a $theta$-term. For properly discretizing the topological charge as an integer we introduce a mixed group- and algebra-valued discretization (MGA scheme) for the gauge fields, such that the charge conjugation
In arXiv:1909.01269 it was shown that the scaling dimension of the lightest charge $n$ operator in the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$ can be computed semiclassically for arbitrary values of $lambda n$, where $lambda
We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with $N$-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plan