ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Structure and Critical Behavior of Multi-Higgs U(1) Lattice Gauge Theory in Three Dimensions

76   0   0.0 ( 0 )
 نشر من قبل Ikuo Ichinose
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with $N$-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plane, inflational cosmology, etc. It is known that there is no phase transition in the N=1 model. For N=2, we found that the system has a second-order phase transition line $tilde{c}_1(c_2)$ in the $c_2$(gauge coupling)$-c_1$(Higgs coupling) plane, which separates the confinement phase and the Higgs phase. Numerical results suggest that the phase transition belongs to the universality class of the 3D XY model as the previous works by Babaev et al. and Smiseth et al. suggested. For N=3, we found that there exists a critical line similar to that in the N=2 model, but the critical line is separated into two parts; one for $c_2 < c_{2{rm tc}}=2.4pm 0.1$ with first-order transitions, and the other for $ c_{2{rm tc}} < c_2$ with second-order transitions, indicating the existence of a tricritical point. We verified that similar phase diagram appears for the N=4 and N=5 systems. We also studied the case of anistropic Higgs coupling in the N=3 model and found that there appear two second-order phase transitions or a single second-order transition and a crossover depending on the values of the anisotropic Higgs couplings. This result indicates that an enhancement of phase transition occurs when multiple phase transitions coincide at a certain point in the parameter space.

قيم البحث

اقرأ أيضاً

We simulate the 2d U(1) gauge Higgs model on the lattice with a topological angle $theta$. The corresponding complex action problem is overcome by using a dual representation based on the Villain action appropriately endowed with a $theta$-term. The Villain action is interpreted as a non-compact gauge theory whose center symmetry is gauged and has the advantage that the topological term is correctly quantized so that $2pi$ periodicity in $theta$ is intact. Because of this the $theta = pi$ theory has an exact $Z_2$ charge-conjugation symmetry $C$, which is spontaneously broken when the mass-squared of the scalars is large and positive. Lowering the mass squared the symmetry becomes restored in a second order phase transition. Simulating the system at $theta = pi$ in its dual form we determine the corresponding critical endpoint as a function of the mass parameter. Using a finite size scaling analysis we determine the critical exponents and show that the transition is in the 2d Ising universality class, as expected.
133 - G. Damm , W. Kerler 1998
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex istence of a number of different states. Then our present studies concentrate on larger values of the monopole coupling $lambda$ where the confinement-Coulomb phase transition turns out to become of second order. Performing a finite-size analysis we find that the critical exponent $ u$ is close to, however, different from the gaussian value and that in the range considered $ u$ increases somewhat with $lambda$.
We discuss a phase diagram for a relativistic SU(2) x U_{S}(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the $U_{S}(1)$ field is infinitely coupled, and the SU(2) field is moved awa y from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review uncoventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the r^ole of instantons of the unbroken subgroup U(1) of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudo-gap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to non-perturbative effects (instantons) of the subgroup U(1) of SU(2).
We study 2d U(1) gauge Higgs systems with a $theta$-term. For properly discretizing the topological charge as an integer we introduce a mixed group- and algebra-valued discretization (MGA scheme) for the gauge fields, such that the charge conjugation symmetry at $theta = pi$ is implemented exactly. The complex action problem from the $theta$-term is overcome by exactly mapping the partition sum to a worldline/worldsheet representation. Using Monte Carlo simulation of the worldline/worldsheet representation we study the system at $theta = pi$ and show that as a function of the mass parameter the system undergoes a phase transition. Determining the critical exponents from a finite size scaling analysis we show that the transition is in the 2d Ising universality class. We furthermore study the U(1) gauge Higgs systems at $theta = pi$ also with charge 2 matter fields, where an additional $Z_2$ symmetry is expected to alter the phase structure. Our results indicate that for charge 2 a true phase transition is absent and only a rapid crossover separates the large and small mass regions.
We study the three-dimensional U(1)+Higgs theory (Ginzburg-Landau model) as an effective theory for finite temperature phase transitions from the 1 K scale of superconductivity to the relativistic scales of scalar electrodynamics. The relations betwe en the parameters of the physical theory and the parameters of the 3d effective theory are given. The 3d theory as such is studied with lattice Monte Carlo techniques. The phase diagram, the characteristics of the transition in the first order regime, and scalar and vector correlation lengths are determined. We find that even rather deep in the first order regime, the transition is weaker than indicated by 2-loop perturbation theory. Topological effects caused by the compact formulation are studied, and it is demonstrated that they vanish in the continuum limit. In particular, the photon mass (inverse correlation length) is observed to be zero within statistical errors in the symmetric phase, thus constituting an effective order parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا