ﻻ يوجد ملخص باللغة العربية
We study different aspects of quantum field theory at finite density using methods from quantum information theory. For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions. Using the entanglement entropy on an interval, we construct an entropic $c$-function that is finite. Unlike what happens in Lorentz-invariant theories, this $c$-function exhibits a strong violation of monotonicity; it also encodes the creation of long-range entanglement from the Fermi surface. Motivated by previous works on lattice models, we next calculate numerically the Renyi entropies and find Friedel-type oscillations; these are understood in terms of a defect operator product expansion. Furthermore, we consider the mutual information as a measure of correlation functions between different regions. Using a long-distance expansion previously developed by Cardy, we argue that the mutual information detects Fermi surface correlations already at leading order in the expansion. We also analyze the relative entropy and its Renyi generalizations in order to distinguish states with different charge and/or mass. In particular, we show that states in different superselection sectors give rise to a super-extensive behavior in the relative entropy. Finally, we discuss possible extensions to interacting theories, and argue for the relevance of some of these measures for probing non-Fermi liquids.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent mass
Gauge theories are of paramount importance in our understanding of fundamental constituents of matter and their interactions. However, the complete characterization of their phase diagrams and the full understanding of non-perturbative effects are st
By using the quantum Ising chain as a test bed and treating the spin polarization along the external transverse field as the generalized density, we examine the performance of different levels of density functional approximations parallel to those wi
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the
In (2+1)-dimensional QED with a Chern-Simons term, we show that spontaneous magnetization occurs in the context of finite density vacua, which are the lowest Landau levels fully or half occupied by fermions. Charge condensation is shown to appear so