ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion

312   0   0.0 ( 0 )
 نشر من قبل Nikita Kondratiev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed an original model describing the process of the frequency comb generation in the self-injection locking regime and performed numerical simulation of this process.Generation of the dissipative Kerr solitons in the self-injection locking regime at anomalous group velocity dispersion was studied numerically. Different regimes of the soliton excitation depending on the locking phase, backscattering parameter and pump power were identified. It was also proposed and confirmed numerically that self-injection locking may provide an easy way for the generation of the frequency combs at normal group velocity dispersion. Generation of platicons was demonstrated and studied in detail. The parameter range providing platicon excitation was found.

قيم البحث

اقرأ أيضاً

Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantl y relaxed with the demonstration of soliton formation via self-injection locking of the pump laser to the microresonator. Yet to date, the dynamics of this process has not been fully understood. Prior models of self-injection locking were not able to explain sufficiently large detunings, crucial for soliton formation. Here we develop a theoretical model of self-injection locking to a nonlinear microresonator (nonlinear self-injection locking) for the first time and show that self- and cross-phase modulation of the clockwise and counter-clockwise light enables soliton formation. Using an integrated soliton microcomb of directly detectable 30 GHz repetition rate, consisting of a DFB laser self-injection-locked to a Si3N4 microresonator chip, we study the soliton formation dynamics via self-injection locking, as well as the repetition rate evolution, experimentally. We reveal that Kerr nonlinearity in microresonator significantly modifies locking dynamics, making laser emission frequency red detuned. We propose and implement a novel technique for measurements of the nonlinear frequency tuning curve and concurrent observation of microcomb states switching in real time.
The past decade has witnessed major advances in the development of microresonator-based frequency combs (microcombs) that are broadband optical frequency combs with repetition rates in the millimeter-wave to microwave domain. Integrated microcombs ca n be manufactured using wafer-scale process and have been applied in numerous applications. Most of these advances are based on the harnessing of dissipative Kerr solitons (DKS) in optical microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using dissipative localized structures that are referred to as dark pulse, switching wave or platicon. Importantly, as most materials feature intrinsic normal GVD, the requirement of dispersion engineering is significantly relaxed for platicon generation. Therefore while DKS microcombs require particular designs and fabrication processes, platicon microcombs can be readily built using standard CMOS-compatible platforms such as thin-film (i.e. typically below 300 nm) Si3N4. Yet laser self-injection locking that has been recently used to create highly compact integrated DKS microcomb modules has not been demonstrated for platicons. Here we report the first fully integrated platicon microcomb operating at a microwave-K-band repetition rate. Using laser self-injection locking of a DFB laser edge-coupled to a Si3N4 microresonator, platicons are electrically initiated and stably maintained, enabling a compact microcomb module without any complex control. We further characterize the phase noise of the platicon repetition rate and the pumping laser. The observation of self-injection-locked platicons facilitates future wide adoption of microcombs as a build-in block in standard photonic integrated architectures via commercial foundry service.
It has long been thought that normal group-velocity dispersion (GVD) cannot be produced in free space via angular dispersion. Indeed, conventional diffractive or dispersive components such as gratings or prisms produce only anomalous GVD. We identify the conditions that must be fulfilled by the angular dispersion introduced into a plane-wave pulse to yield normal GVD. We then utilize a pulsed-beam shaper capable of introducing arbitrary angular-dispersion profiles to symmetrically produce normal and anomalous GVD in free space, which are realized here on the same footing for the first time.
We experimentally demonstrate Kerr beam self-cleaning in the anomalous dispersion regime of graded-index multimode optical fibers. By using 90 ps duration, highly chirped (2 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a 2 decades reduction, with respect to previous experiments in the normal dispersion regime, of threshold peak power for beam self-cleaning into the fundamental mode of the fiber, accompanied by more than 65% nonlinear increase of intensity correlation into the fundamental mode. Highly efficient self-selection of the LP11 mode is also observed. Self-cleaned beams remain spatio-temporally stable for more than a decade of variation of the peak pulse power.
Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we experimentally demonstrate that this requirement can be lifted by driving the resonator with a pulsed pump source. We also show that controlling the desynchronization between the pump repetition rate and the cavity free-spectral range (FSR) provides a simple mechanism to tune the center frequency of the output comb. Using a fiber mini-resonator with a radius of only 6 cm we experimentally present spectrally flat combs with a bandwidth of 3 THz whose center frequency can be tuned by more than 2 THz. By driving the cavity at harmonics of its 0.54 GHz FSR, we are able to generate combs with line spacings selectable between 0.54 and 10.8 GHz. The ability to tune both the center frequency and frequency spacing of the output comb highlights the flexibility of this platform. Additionally, we demonstrate that under conditions of large pump-cavity desynchronization, the same cavity also supports a new form of Raman-assisted anomalous dispersion cavity soliton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا