ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of soliton self-injection locking in a photonic chip-based microresonator

245   0   0.0 ( 0 )
 نشر من قبل Nikita Kondratiev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantly relaxed with the demonstration of soliton formation via self-injection locking of the pump laser to the microresonator. Yet to date, the dynamics of this process has not been fully understood. Prior models of self-injection locking were not able to explain sufficiently large detunings, crucial for soliton formation. Here we develop a theoretical model of self-injection locking to a nonlinear microresonator (nonlinear self-injection locking) for the first time and show that self- and cross-phase modulation of the clockwise and counter-clockwise light enables soliton formation. Using an integrated soliton microcomb of directly detectable 30 GHz repetition rate, consisting of a DFB laser self-injection-locked to a Si3N4 microresonator chip, we study the soliton formation dynamics via self-injection locking, as well as the repetition rate evolution, experimentally. We reveal that Kerr nonlinearity in microresonator significantly modifies locking dynamics, making laser emission frequency red detuned. We propose and implement a novel technique for measurements of the nonlinear frequency tuning curve and concurrent observation of microcomb states switching in real time.

قيم البحث

اقرأ أيضاً

Microresonator-based optical frequency combs have been a topic of extensive research during the last few years. Several theoretical models for the comb generation have been proposed; however, they do not comprehensively address experimental results t hat show a variety of independent comb generation mechanisms. Here, we present frequency-domain experiments that illuminate the transition of microcombs into phase-locked states, which show characteristics of injection locking between ensembles of comb modes. In addition, we demonstrate the existence of equidistant optical frequency combs that are phase stable but with non-deterministic phase relationships between individual comb modes.
Self-injection locking is a dynamic phenomenon representing stabilization of the emission frequency of an oscillator with a passive cavity enabling frequency filtered coherent feedback to the oscillator cavity. For instance, self-injection locking of a semiconductor laser to a high-quality-factor (high-Q) whispering gallery mode (WGM) microresonator can result in multiple orders of magnitude reduction of the laser linewidth. The phenomenon was broadly studied in experiments, but its detailed theoretical model allowing improving the stabilization performance does not exist. In this paper we develop such a theory. We introduce five parameters identifying efficiency of the self-injection locking in an experiment, comprising back-scattering efficiency, phase delay between the laser and the high-Q cavities, frequency detuning between the laser and the high-Q cavities, the pump coupling efficiency, the optical path length between the laser and the microresonator. Our calculations show that the laser linewidth can be improved by two orders of magnitude compared with the case of not optimal self-injection locking. We present recommendations on the experimental realization of the optimal self-injection locking regime. The theoretical model provides deeper understanding of the self-injection locking and benefits multiple practical applications of self-injection locked oscillators.
Recent advances in the design and fabrication of on-chip optical microresonators has greatly expanded their applications in photonics, enabling metrology, communications, and on-chip lasers. Designs for these applications require fine control of disp ersion, bandwidth and high optical quality factors. Co-engineering these figures of merit remains a significant technological challenge due to design strategies being largely limited to analytical tuning of cross-sectional geometry. Here, we show that photonic inverse-design facilitates and expands the functionality of on-chip microresonators; theoretically and experimentally demonstrating flexible dispersion engineering, quality factor beyond 2 million on the silicon-on-insulator platform with single mode operation, and selective wavelength-band operation.
We developed an original model describing the process of the frequency comb generation in the self-injection locking regime and performed numerical simulation of this process.Generation of the dissipative Kerr solitons in the self-injection locking r egime at anomalous group velocity dispersion was studied numerically. Different regimes of the soliton excitation depending on the locking phase, backscattering parameter and pump power were identified. It was also proposed and confirmed numerically that self-injection locking may provide an easy way for the generation of the frequency combs at normal group velocity dispersion. Generation of platicons was demonstrated and studied in detail. The parameter range providing platicon excitation was found.
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e xample, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of many longitudinal and transverse modes in a laser has received little attention. The multitude of disparate frequency spacings, strong dispersions, and complex nonlinear interactions among modes greatly favor decoherence over the emergence of order. Here we report the locking of multiple transverse and longitudinal modes in fiber lasers to generate ultrafast spatiotemporal pulses. We construct multimode fiber cavities using graded-index multimode fiber (GRIN MMF). This causes spatial and longitudinal mode dispersions to be comparable. These dispersions are counteracted by strong intracavity spatial and spectral filtering. Under these conditions, we achieve spatiotemporal, or multimode (MM), mode-locking. A variety of other multimode nonlinear dynamical processes can also be observed. Multimode fiber lasers thus open new directions in studies of three-dimensional nonlinear wave propagation. Lasers that generate controllable spatiotemporal fields, with orders-of-magnitude increases in peak power over existing designs, should be possible. These should increase laser utility in many established applications and facilitate new ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا