ﻻ يوجد ملخص باللغة العربية
It has long been thought that normal group-velocity dispersion (GVD) cannot be produced in free space via angular dispersion. Indeed, conventional diffractive or dispersive components such as gratings or prisms produce only anomalous GVD. We identify the conditions that must be fulfilled by the angular dispersion introduced into a plane-wave pulse to yield normal GVD. We then utilize a pulsed-beam shaper capable of introducing arbitrary angular-dispersion profiles to symmetrically produce normal and anomalous GVD in free space, which are realized here on the same footing for the first time.
We have observed the propagation of an approximately 35 ns long light pulse with a negative group velocity through a laser-cooled 85Rb atomic medium. The anomalous dispersion results from linear atom-light interaction, and is unrelated to long-lived
Designing integrated photonics, especially to leverage Kerr-nonlinear optics, requires accurate and precise knowledge of refractive index across the visible to infrared spectral ranges. Tantala (Ta_2O_5) is an emerging material platform for integrate
We developed an original model describing the process of the frequency comb generation in the self-injection locking regime and performed numerical simulation of this process.Generation of the dissipative Kerr solitons in the self-injection locking r
In positive phase-mismatched SHG and normal dispersion, a gaussian spatio-temporal pulse transforms spontaneously into a X-pulse, underlies spatio-temporal compression and eventually leads to stationary 3-D propagation. Experimental and numerical data are provided
Breathers are localized waves, that are periodic in time or space. The concept of breathers is useful for describing many physical systems including granular lattices, Bose-Einstein condensation, hydrodynamics, plasmas and optics. Breathers could exi