ﻻ يوجد ملخص باللغة العربية
Our study shows that deposited Ge and Si dielectric thin-films can exhibit low microwave losses at near single-photon powers and sub-Kelvin temperatures ($approx$40 mK). This low loss enables their use in a wide range of devices, including low-loss coplanar, microstrip, and stripline resonators, as well as layers for device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication. We use coplanar microwave resonator structures with narrow trace widths of 2-16 $mu textrm{m}$ to maximize the sensitivity of loss tangent measurements to the interface and properties of the deposited dielectrics, rather than to optimize the quality factor. In this configuration, thermally-evaporated $approx 1 mu textrm{m}$ thick amorphous germanium (a-Ge) films deposited on Si (100) have a single photon loss tangent of $1-2times10^{-6}$ and, $9 mu textrm{m}$-thick chemical vapor deposited (CVD) homoepitaxial Si has a single photon loss tangent of $0.6-2times 10^{-5}$. Interface contamination limits the loss in these devices.
There is a great interest in the scientific community to perform calorimetry on samples having mass in the nanogram range. A detailed knowledge of the energy (heat) exchange in the fast growing family of micro- and nano-systems could provide valuable
Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source
We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anod
Dielectric measurements on insulating materials at cryogenic temperatures can be challenging, depending on the frequency and temperature ranges of interest. We present a technique to study the dielectric properties of bulk dielectrics at GHz frequenc
Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor (CMOS) processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting in