ترغب بنشر مسار تعليمي؟ اضغط هنا

An atomically flat single-crystalline gold film thermometer on mica to study energy (heat) exchange at the nano-scale

70   0   0.0 ( 0 )
 نشر من قبل Stefan Heun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a great interest in the scientific community to perform calorimetry on samples having mass in the nanogram range. A detailed knowledge of the energy (heat) exchange in the fast growing family of micro- and nano-systems could provide valuable information about the chemistry and physics at the nano-scale. The possibility to have an atomically flat thermal probe represents an added value, because it provides the unique opportunity to perform Scanning Probe Microscopy (SPM) together with calorimetry. Here we report the fabrication, characterization, and calibration of atomically flat, single-crystalline gold film thermometers on mica substrate. Gold re-crystallization has been obtained, and successively the thermometer surface has been studied by Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). The thermometer calibration demonstrates a heat exchange coefficient of 2.1 x 10^(-7) W/K and a performance about 10 times better than previous sensors based on Si substrates. The experimental setup allows the simultaneous investigation of heat exchange and surface physics on the same sample.



قيم البحث

اقرأ أيضاً

Every time a chemical reaction occurs, an energy exchange between reactants and environment exists, which is defined as the enthalpy of the reaction. In the last decades, research has resulted in an increasing number of devices at the micro- or nano- scale. Sensors, catalyzers, and energy storage systems are more and more developed as nano-devices which represent the building blocks for commercial macroscopic objects. A general method for the direct evaluation of the energy balance of such systems is not available at present. Calorimetry is a powerful tool to investigate energy exchange, but it usually needs macroscopic sample quantities. Here we report on the development of an original experimental setup able to detect temperature variations as low as 10 mK in a sample of 10 ng using a thermometer device having physical dimensions of 5x5 mm2. The technique has been utilized to measure the enthalpy release during the adsorption process of H2 on a titanium decorated monolayer graphene. The sensitivity of these thermometers is high enough to detect a hydrogen uptake of 10^(-10) moles, corresponding to 0.2 ng, with an enthalpy release of about 23 uJ. The experimental setup allows, in perspective, the scalability to even smaller sizes.
Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance for the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. So far the experimen tal realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements will drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large (>100 micron^2) but thin (<80 nm) chemically grown single-crystalline gold flakes, which, after immobilization, serve as an ideal basis for focused-ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometer length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and to realize high-definition plasmonic nanocircuitry.
Our study shows that deposited Ge and Si dielectric thin-films can exhibit low microwave losses at near single-photon powers and sub-Kelvin temperatures ($approx$40 mK). This low loss enables their use in a wide range of devices, including low-loss c oplanar, microstrip, and stripline resonators, as well as layers for device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication. We use coplanar microwave resonator structures with narrow trace widths of 2-16 $mu textrm{m}$ to maximize the sensitivity of loss tangent measurements to the interface and properties of the deposited dielectrics, rather than to optimize the quality factor. In this configuration, thermally-evaporated $approx 1 mu textrm{m}$ thick amorphous germanium (a-Ge) films deposited on Si (100) have a single photon loss tangent of $1-2times10^{-6}$ and, $9 mu textrm{m}$-thick chemical vapor deposited (CVD) homoepitaxial Si has a single photon loss tangent of $0.6-2times 10^{-5}$. Interface contamination limits the loss in these devices.
Friction is a ubiquitous phenomenon that greatly affects our everyday lives and is responsible for large amounts of energy loss in industrialised societies. Layered materials such as graphene have interesting frictional properties and are often used as (additives to) lubricants to reduce friction and protect against wear. Experimental Atomic Force Microscopy studies and detailed simulations have shown a number of intriguing effects such as friction strengthening and dependence of friction on the number of layers covering a surface. Here, we propose a simple, fundamental, model for friction on thin sheets. We use our model to explain a variety of seemingly contradictory experimental as well as numerical results. This model can serve as a basis for understanding friction on thin sheets, and opens up new possibilities for ultimately controlling their friction and wear protection.
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode co ntains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا