ترغب بنشر مسار تعليمي؟ اضغط هنا

Field emission from AlGaN nanowires with low turn-on field

320   0   0.0 ( 0 )
 نشر من قبل Filippo Giubileo Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anode gives access to local properties and allows collecting electrons emitted from areas as small as 1$mu m^2$. The field emission characteristics are analyzed in the framework of Fowler-Nordheim theory and we find a field enhancement factor as high as $beta$ = 556 and a minimum turn-on field $E_{turn-on}$ = 17 V/$mu$m for a cathode-anode separation distance d = 500 nm. We show that for increasing separation distance, $E_{turn-on}$ increases up to about 35 V/$mu$m and $beta$ decreases to 100 at d = 1600 nm. We also demonstrate the time stability of the field emission current from AlGaN nanowires for several minutes. Finally, we explain the observation of modified slope of the Fowler-Nordheim plots at low fields in terms of non-homogeneous field enhancement factors due to the presence of protruding emitters.



قيم البحث

اقرأ أيضاً

Nanowires can serve as flexible substrates for hybrid epitaxial growth on selected facets, allowing for design of heterostructures with complex material combinations and geometries. In this work we report on hybrid epitaxy of semiconductor - ferromag netic insulator - superconductor (InAs/EuS/Al) nanowire heterostructures. We study the crystal growth and complex epitaxial matching of wurtzite InAs / rock-salt EuS interfaces as well as rock-salt EuS / face-centered cubic Al interfaces. Because of the magnetic anisotropy originating from the nanowire shape, the magnetic structure of the EuS phase are easily tuned into single magnetic domains. This effect efficiently ejects the stray field lines along the nanowires. With tunnel spectroscopy measurements of the density of states, we show the material has a hard induced superconducting gap, and magnetic hysteretic evolution which indicates that the magnetic exchange fields are not negligible. These hybrid nanowires fulfil key material requirements for serving as a platform for spin-based quantum applications, such as scalable topological quantum computing.
125 - F. Hahl , L. Lindner , X. Vidal 2021
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors. Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity via increased signal strength and magnetic field contrast. In this work we experimentally demonstrate laser threshold magnetometry. We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532nm and resonantly seeded at 710nm. This enables amplification of the signal power by stimulated emission of 64%. We show the magnetic-field dependency of the amplification and thus, demonstrate magnetic-field dependent stimulated emission from an NV-centre ensemble. This emission shows a record contrast of 33% and a maximum output power in the mW regime. These advantages of coherent read-out of NV-centres pave the way for novel cavity and laser applications of quantum defects as well as diamond NV magnetic field sensors with significantly improved sensitivity for the health, research and mining sectors.
254 - Muhammad A. Alam , Mengwei Si , 2019
The elegant simplicity of the device concept and the urgent need for a new transistor at the twilight of Moores law have inspired many researchers in industry and academia to explore the physics and technology of negative capacitance field effect tra nsistor (NC-FET). Although hundreds of papers have been published, the validity of quasi-static NC and the frequency-reliability limits of NC-FET are still being debated. The concept of NC - if conclusively demonstrated - will have broad impacts on device physics and technology development. Here, the authors provide a critical review of recent progress on NC-FETs research and some starting points for a coherent discussion.
Ferroelectric field-effect transistors employ a ferroelectric material as a gate insulator, the polarization state of which can be detected using the channel conductance of the device. As a result, the devices are of potential to use in non-volatile memory technology, but suffer from short retention times, which limits their wider application. Here we report a ferroelectric semiconductor field-effect transistor in which a two-dimensional ferroelectric semiconductor, indium selenide ({alpha}-In2Se3), is used as the channel material in the device. {alpha}-In2Se3 was chosen due to its appropriate bandgap, room temperature ferroelectricity, ability to maintain ferroelectricity down to a few atomic layers, and potential for large-area growth. A passivation method based on the atomic-layer deposition of aluminum oxide (Al2O3) was developed to protect and enhance the performance of the transistors. With 15-nm-thick hafnium oxide (HfO2) as a scaled gate dielectric, the resulting devices offer high performance with a large memory window, a high on/off ratio of over 108, a maximum on-current of 862 {mu}A {mu}m-1, and a low supply voltage.
Stray magnetic fields contain significant information about the electronic and magnetic properties of condensed matter systems. For two-dimensional (2D) systems, stray field measurements can even allow full determination of the source quantity. For i nstance, a 2D map of the stray magnetic field can be uniquely transformed into the 2D current density that gave rise to the field and, under some conditions, into the equivalent 2D magnetisation. However, implementing these transformations typically requires truncation of the initial data and involves singularities that may introduce errors, artefacts, and amplify noise. Here we investigate the possibility of mitigating these issues through vector measurements. For each scenario (current reconstruction and magnetisation reconstruction) the different possible reconstruction pathways are analysed and their performances compared. In particular, we find that the simultaneous measurement of both in-plane components ($B_x$ and $B_y$) enables near-ideal reconstruction of the current density, without singularity or truncation artefacts, which constitutes a significant improvement over reconstruction based on a single component (e.g. $B_z$). On the other hand, for magnetisation reconstruction, a single measurement of the out-of-plane field ($B_z$) is generally the best choice, regardless of the magnetisation direction. We verify these findings experimentally using nitrogen-vacancy magnetometry in the case of a 2D current density and a 2D magnet with perpendicular magnetisation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا